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ABSTRACT
Bayesian hypothesis testing is investigated when the prior probabili-
ties of the hypotheses, taken as a random vector, must be quantized.
Nearest neighbor and centroid conditions for quantizer optimality
are derived using mean Bayes risk error as a distortion measure. An
example of optimal quantization for hypothesis testing is provided.
Human decision making is briefly studied assuming quantized prior
Bayesian hypothesis testing; this model explains several experimen-
tal findings.

Index Terms— quantization, categorization, Bayesian hypoth-
esis testing, signal detection, Bayes risk error

1. INTRODUCTION

Consider a hypothesis testing scenario in which an object is to be
observed to determine which one of M states, {h0, . . . , hM−1},
it is in. The object has prior probability pm of being in state
m, i.e. pm = Pr[H = hm], and prior probability vector p =ˆ
p0 · · · pM−1

˜T , with
PM−1

m=0 pm = 1, which is known to the
decision maker. M -ary hypothesis testing with known prior proba-
bilities calls for the Bayesian formulation to the problem, for which
the optimal decision rule minimizes Bayes risk.

Now consider the situation when there is a population of objects,
each with its own prior probability vector drawn from the distribu-
tion fP (p) supported on theM -dimensional probability simplex. If
the prior probability vector of each object were known perfectly to
the decision maker before observation and hypothesis testing, then
the scenario would be no different than that of standard Bayesian
hypothesis testing. However, we consider the case in which the de-
cision maker is constrained and can only work with at most K dif-
ferent prior probability vectors. Hence, when there are more thanK
objects, the decision maker must first map the true prior probability
vector of the object being observed to one of the K available vec-
tors and then proceed to perform the optimal Bayesian hypothesis
test, treating that vector as the prior probabilities of the object. The
decision maker performs the mapping operation without error.

In this paper, the design of the mapping from prior probabil-
ity vectors in the population to one of K representative probability
vectors is approached as a quantization problem. Mean Bayes risk
error (MBRE) is defined as a fidelity criterion for the quantization
of fP (p) and conditions are derived for a minimum MBRE quan-
tizer. Some examples of MBRE-optimal quantizers are given along
with their performance in the low-rate quantization regime. We also
discuss how certain tasks that human decision makers face are well-
modeled by the hypothesis testing scenario of this paper due to cer-
tain suboptimalities in human processing.
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Note that previous work that combines detection and quantiza-
tion looks at the quantization of observed data, not prior probabili-
ties, and also only approximates the Bayes risk function instead of
working with it directly [1, 2, 3]. In such work, the concern is the
scenario in which there is a communication constraint between the
sensor and the decision maker, but the decision maker has uncon-
strained processing capability. We are concerned with the opposite
case, in which there is no communication constraint between the
sensor and decision maker, but the decision maker must operate un-
der a finite memory constraint. Finite memory constraints apply not
just to humans but to all decision making systems. We are not aware
of any previous work that has looked at quantization, clustering, or
categorization of prior probabilities. In the remainder of the paper,
we focus on binary hypothesis testing,M = 2.

2. BAYES RISK ERROR

In the binary Bayesian hypothesis testing problem, there are two hy-
potheses h0 and h1 with prior probabilities p0 = Pr[H = h0] and
p1 = Pr[H = h1] = 1 − p0, a noisy observation Y , and likeli-
hoods fY |H(y|h0) and fY |H(y|h1). A function ĥ(y) is designed
that uniquely maps every possible y to either h0 or h1. The two
types of error probabilities are pIE = Pr[ĥ(Y ) = h1|H = h0] and
pIIE = Pr[ĥ(Y ) = h0|H = h1].

The decision rule ĥ(y) is chosen to minimize the Bayes risk
function J , an expectation over the non-negative cost function
c(hi, hj):

J = E[c(H, ĥ(Y ))] (1)

= (c10 − c00)p0p
I
E + (c01 − c11)p1p

II
E + c00p0 + c11p1,

where cij = c(hi, hj). It is often of interest to assign no cost to
correct decisions, i.e. c00 = c11 = 0, which we assume in the re-
mainder of this paper. In this case, the Bayes risk simplifies to:

J(p0) = c10p0p
I
E(p0) + c01(1− p0)p

II
E(p0). (2)

In (2), the dependence of the Bayes risk and error probabilities on p0

has been explicitly noted (p1 is automatically specified by specifying
p0). The function J(p0) is zero at the points p0 = 0 and p0 = 1 and
is positive-valued, concave, and continuous in the interval (0, 1).

In the case when the true prior probability is p0, but ĥ(y) is
designed using some other value a, there is mismatch, and the mis-
matched Bayes risk is:

J̃(p0, a) = c10p0p
I
E(a) + c01(1− p0)p

II
E(a). (3)

J̃(p0, a) is a linear function of p0 with slope (c10p
I
E(a)−c01p

II
E(a))

and intercept c01p
II
E(a). Note that J̃(p0, a) is tangent to J(p0) at a

and that J̃(p0, p0) = J(p0).
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Fig. 1. The intersection of the lines J̃(p0, ak), tangent to J(p0)

at ak, and J̃(p0, ak+1), tangent to J(p0) at ak+1, is the optimal
interval boundary.

Let us define Bayes risk error as the difference between the mis-
matched Bayes risk function and the Bayes risk function:

d(p0, a) = J̃(p0, a)− J(p0). (4)

Since J(p0) is a non-negative continuous, concave function and
the line J̃(p0, a) is tangent to J(p0), we know that J̃(p0, a) ≥
J(p0) ≥ 0. Consequently, d(p0, a) is non-negative and only equal
to zero when p0 = a. Moreover, d(p0, a) is convex in both p0 and a

and continuous in p0 for all a.

3. QUANTIZER OPTIMALITY CONDITIONS

The conditions necessary for the local optimality of a scalar quan-
tizer for fP0(p0) under Bayes risk error distortion are now derived.
AK-point scalar quantizer partitions the interval [0, 1] intoK subin-
tervals R1 = [0, b1], R2 = (b1, b2], R3 = (b2, b3], . . . , RK =
(bK−1, 1]. For each of these quantization regionsRk, there is a rep-
resentation point or codeword, ak, to which elements are mapped.
A quantizer can be viewed as a nonlinear function v(·) such that
v(p0) = ak for p0 ∈ Rk . For a given K, we would like to find the
quantizer that minimizes the MBRE:

D = E[d(P0, v(P0))] =

Z
d(p0, v(p0))fP0(p0)dp0. (5)

There is no closed-form solution, but an optimal quantizer must sat-
isfy the nearest neighbor condition, the centroid condition, and the
zero probability of boundary condition [4]. The nearest neighbor and
centroid conditions are developed for MBRE in the following sub-
sections. Using the nearest neighbor and centroid conditions, the it-
erative Lloyd-Max algorithm can be applied to find minimumMBRE
quantizers [4].

3.1. Nearest Neighbor Condition

With the codebook {ak} fixed, an expression for the interval bound-
aries {bk} is derived. Given any p0 ∈ [ak, ak+1], if J̃(p0, ak) <

J̃(p0, ak+1) then Bayes risk error is minimized if p0 is represented
by ak and vice versa. The boundary point bk ∈ [ak, ak+1] is the
abscissa of the point at which the lines J̃(p0, ak) and J̃(p0, ak+1)
intersect. The idea is illustrated graphically in Fig. 1.

By manipulating the slopes and intercepts of J̃(p0, ak) and
J̃(p0, ak+1), the point of intersection is found to be:

bk =
c01

`
pIIE(ak+1)− pIIE(ak)

´
c01 (pIIE(ak+1)− pIIE(ak))− c10 (pIE(ak+1)− pIE(ak))

.

(6)

3.2. Centroid Condition

With the quantization regions fixed, the MBRE is to be minimized
over the {ak}. Here, the MBRE is expressed as the sum of integrals
over quantization regions:

D =
KX

k=1

Z
Rk

“
J̃(p0, ak)− J(p0)

”
fP0(p0)dp0. (7)

Because the regions are fixed, the minimization may be performed
for each interval separately.

Let us define I Ik =
R
Rk

p0fP0(p0)dp0 and I IIk =
R
Rk

(1 −

p0)fP0(p0)dp0, which are conditional means. Then:

ak = arg min
a

n
c10I

I
kp
I
E(a) + c01I

II
kp

II
E(a)

o
. (8)

Since d(p0, a) is convex, (8) is uniquely minimized by setting
its derivative equal to zero. Thus, ak is the solution to:

c10I
I
k

dpIE(ak)

dak
+ c01I

II
k

dpIIE(ak)

dak
= 0. (9)

4. EXAMPLES

As an example, let us consider the following scalar signal and mea-
surement model:

Y = sm + W, m ∈ {0, 1}, (10)

where s0 = 0 and s1 = μ (a known, deterministic quantity), and
W is a zero-mean, Gaussian random variable with variance σ2. The
two error probabilities are:

p
I
E(p0) = Q

“
μ
2σ

+ σ
μ

ln
“

c10p0
c01(1−p0)

””
,

p
II
E(p0) = Q

“
μ
2σ
− σ

μ
ln

“
c10p0

c01(1−p0)

””
, (11)

where Q(α) = 1√
2π

R∞
α

e−x2/2dx.
Finding the centroid condition, the derivatives of the error prob-

abilities are:

dpIE(p0)

dp0

˛̨
˛
p0=ak

= − 1√
2π

σ
μ

1
ak(1−ak)

e
− 1

2

“
μ
2σ

+ σ
μ

ln
“

c10ak
c01(1−ak)

””2

,

dpIIE(p0)

dp0

˛̨
˛
p0=ak

= + 1√
2π

σ
μ

1
ak(1−ak)

e
− 1

2

“
μ
2σ
−σ

μ
ln

“
c10ak

c01(1−ak)

””2

.

By substituting these derivatives into (9) and simplifying, the fol-
lowing expression is obtained for the representation points:

ak =
I Ik

I Ik + I IIk
. (12)

Examples with μ = 1, σ = 1 are presented below. We look
at the setting in which all prior probabilities are equally likely. As
a point of reference, a comparison is made to quantizers designed
under mean absolute error (MAE), an objective that does not account
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Fig. 2. MBRE for uniformly distributed P0 and Bayes costs c10 =
c01 = 1 plotted as a function of the number of quantization levelsK;
the solid line with circle markers is the MBRE-optimal quantizer and
the dotted line with asterisk markers is the MAE-optimal uniform
quantizer. (The two lines are nearly coincident.)
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Fig. 3. Quantizers for uniformly distributed P0 and Bayes costs
c10 = c01 = 1. J̃(p0, v(p0)) is plotted for (a) K = 1, (b) K = 2,
(c) K = 3, and (d) K = 4; the markers, circle and asterisk for the
MBRE-optimal and MAE-optimal quantizers respectively, are the
representation ponts {ak}. The gray line is the unquantized Bayes
risk J(p0).

for hypothesis testing [5]. The MBRE-optimal quantizer’s MBRE is
of course never worse than that of the MAE-optimal quantizer.

The MBRE of the MBRE-optimal quantizer and a quantizer de-
signed to minimizeMAEwith respect to uniform fP0(p0) are plotted
in Fig. 2. (The optimal MAE quantizer for the uniform distribution
is the uniform quantizer.) The plot shows MBRE as a function ofK;
the solid line with circle markers is the MBRE-optimal quantizer and
the dotted line with asterisk markers is the MAE-optimal quantizer.

The performance of both quantizers is similar, but the MBRE-
optimal quantizer always performs better or equally. For K = 1, 2,
the two quantizers are identical, as seen in Fig. 3a-b. The plots in
Fig. 3 show J̃(p0, v(p0)) solid with circle markers and dotted with
asterisk markers for the MBRE- and MAE-optimal quantizers re-
spectively; the markers are the representation points. The gray line
is J(p0), the Bayes risk with unquantized prior probabilities. Each
increment of K is associated with a reduction in Bayes risk. There
is a large performance improvement fromK = 1 toK = 2.

In Fig. 4 and Fig. 5, similar plots to those above are given for the
case when the Bayes costs c10 and c01 are unequal. The unequal
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Fig. 4. MBRE for uniformly distributed P0 and Bayes costs c10 =
1, c01 = 4 plotted as a function of the number of quantization levels
K; the solid line with circle markers is the MBRE-optimal quan-
tizer and the dotted line with asterisk markers is the MAE-optimal
uniform quantizer.
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Fig. 5. Quantizers for uniformly distributed P0 and Bayes costs
c10 = 1, c01 = 4. J̃(p0, v(p0)) is plotted for (a)K = 1, (b)K = 2,
(c) K = 3, and (d) K = 4; the markers, circle and asterisk for the
MBRE-optimal and MAE-optimal quantizers respectively, are the
representation ponts {ak}. The gray line is the unquantized Bayes
risk J(p0).

costs skew the Bayes risk function and consequently the represen-
tation point locations. The difference in performance between the
MBRE-optimal and MAE-optimal quantizers is greater in this exam-
ple because the MAE-criterion cannot incorporate the Bayes costs,
which factor into MBRE calculation.

5. IMPLICATIONS ON HUMAN DECISIONMAKING

Let us consider one particular setting for human decision making:
a referee deciding whether a player has committed a foul using his
or her noisy observation as well as prior experience. Every player
commits fouls at a different rate; some players are dirtier or more
agressive than others. It is this rate which is the prior probability for
the ‘foul committed’ hypothesis. Hence, over the population of play-
ers, there is a distribution of prior probabilities. If the referee tunes
the prior probability to the particular player on whose action the de-
cision is to be made, decision-making performance is improved.

Human decision makers are limited in their information process-
ing capacity and can only carry around seven, plus or minus two,
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categories without getting confused [6]. Consequently, the referee is
limited to categorizing players into a small number of dirtiness lev-
els, with associated prototypical prior probabilities. This amounts
to quantization of the distribution of prior probabilities and the use
of the quantization level centroid in which a player falls as the prior
probability when performing hypothesis testing on that player’s ac-
tion, exactly the scenario discussed in the previous sections.

A referee will do a better job with more categories rather than
fewer. Implications of this sort are not surprising. However, when
one additional component is added to the decision-making scenario,
some fairly interesting implications arise.

We discuss mathematically unavoidable consequences of quan-
tized prior hypothesis testing when quantizing the prior probability
for a minority population and for a majority population separately,
while taking identical prior probability distributions of the two pop-
ulations fP0(p0). Distinct populations can be defined along any so-
cially observable dimension; for ease of exposition we use ‘white’
and ‘black’ to denote the two populations. Although there is some
debate in the social cognition literature [7], it is thought that race
and gender categorization is essentially automatic, particularly when
a perceiver lacks the motivation, time, or cognitive capacity to think
deeply.

We can extend the definition of MBRE to two populations as:

D
(2) = w

w+b
E[J̃(P0, vKw (P0))]

+ b
w+b

E[J̃(P0, vKb
(P0))]− E[J(P0)], (13)

where w is the number of whites encountered, b is the number of
blacks encountered, Kw is the number of points in the quantizer for
whites, and Kb is the number of points in the quantizer for blacks.
In order to find the optimal allocation of the total quota of represen-
tation points Kt = Kw + Kb, we minimize D(2) for all Kt − 1
possible allocations and choose the best one.

Fryer and Jackson have previously suggested that it is better to
allocate more representation points to the majority population than
to the minority population [8]. With two separate scalar quantizers,
but a single codebook size constraint, optimizing D(2) over vKw (·)
and vKb

(·) yields the same result. The MBRE for members of the
minority group is greater than that for the majority group.

Assuming white decision makers havew > b and black decision
makers have b > w due to different exposure [9], analysis of quan-
tized prior Bayesian hypothesis testing predicts that there should be
own-race bias in decision making. This prediction is in fact born out
experimentally, see e.g. [10], and in data collected for econometric
studies, e.g. [11, 12]. The human angle to hypothesis testing with
quantized priors, including the role of the Bayes costs c10 and c01,
is discussed in greater detail in a manuscript by the authors [13].

6. CONCLUSION

We have looked at Bayesian hypothesis testing when there is a distri-
bution of prior probabilities, but the decision maker may only use a
quantized version of the true prior probability in designing a decision
rule. Considering the problem of finding the optimal quantizer for
this purpose, we have defined a new fidelity criterion based on the
Bayes risk function. For this criterion, MBRE, we have determined
the conditions that an optimal quantizer satisfies. M -ary hypothesis
testing with M > 2 requires vector quantization rather than scalar
quantization, but determining the Lloyd-Max conditions is no differ-
ent conceptually due to the geometry of the Bayes risk function and
mismatched Bayes risk function. For the M -ary hypothesis testing

case, a multivariate distribution such as the M -dimensional Dirich-
let distribution is needed for fP (p). Previous, though significantly
different, work on quantization for hypothesis testing was unable to
directly minimize the Bayes risk, as was accomplished in this work.

Discrimination on the basis of race, gender, and other socially
observable characteristics has been a troublesome social problem.
Here we have formulated a mathematical theory of quantized prior
hypothesis testing, which, when combined with theories of social
cognition and empirical facts about segregation leads to a generative
model of such discriminative behavior. This biased decision making
arises despite having identical distributions for different populations
and despite no malicious intent on the part of the decision maker.
Discrimination appears to be a permanent artifact of the automatic-
ity of classification along social dimensions and the finite human
capacity for information processing.

7. ACKNOWLEDGMENT

The authors thank Vivek K Goyal, Sanjoy K. Mitter, and Alan
S. Willsky.

8. REFERENCES

[1] S. A. Kassam, “Optimum quantization for signal detection,”
IEEE Trans. Commun., vol. COM-25, pp. 479–484, May 1977.

[2] H. V. Poor and J. B. Thomas, “Applications of Ali-Silvey dis-
tance measures in the design of generalized quantizers,” IEEE
Trans. Commun., vol. COM-25, pp. 893–900, Sept. 1977.

[3] R. Gupta and A. O. Hero, III, “High-rate vector quantization
for detection,” IEEE Trans. Inform. Theory, vol. 49, pp. 1951–
1969, Aug. 2003.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, Boston, 1992.

[5] S. A. Kassam, “Quantization based on the mean-absolute-error
criterion,” IEEE Trans. Commun., vol. COM-26, pp. 267–270,
Feb. 1978.

[6] G. A. Miller, “The magical number seven, plus or minus two:
Some limits on our capacity for processing information,” Psy-
chol. Rev., vol. 63, pp. 81–97, 1956.

[7] C. N. Macrae and G. V. Bodenhausen, “Social cognition:
Thinking categorically about others,” Annu. Rev. Psychol., vol.
51, pp. 93–120, Feb. 2000.

[8] R. G. Fryer, Jr. and M. O. Jackson, “A categorical model of
cognition and biased decision-making,” B. E. J. Theor. Econ.,
to appear.

[9] F. Echenique and R. G. Fryer, Jr., “A measure of segregation
based on social interactions,” Quart. J. Econ., vol. 122, pp.
441–485, May 2007.

[10] C. A. Meissner and J. C. Brigham, “Thirty years of investi-
gating the own-race bias in memory for faces: A meta-analytic
review,” Psychol. Pub. Pol. L., vol. 7, pp. 3–35, Jan. 2001.

[11] J. J. Donohue, III and S. D. Levitt, “The impact of race on
policing and arrests,” J. Law Econ., vol. 44, pp. 367–394, Oct.
2001.

[12] J. Price and J. Wolfers, “Racial discrimination among NBA
referees,” Working Paper 13206, NBER, June 2007.

[13] L. R. Varshney and K. R. Varshney, “Bayesian hypothesis test-
ing with prototype priors and its implications on social discrim-
ination,” Sept. 2007.

3448


