
CIRCULAR REGRESSION USING BAYESIAN UNWRAPPING

Mark R. Morelande

Melbourne Systems Laboratory
Department of Electrical and Electronic Engineering

The University of Melbourne, Australia
email: m.morelande@ee.unimelb.edu.au

ABSTRACT

Circular data arise in a number of biological and physical appli-
cations. Circular regression refers to the study of the dependence
of a circular response variable on a collection of explanatory vari-
ables. In this paper the circular response variable is modelled as
a wrapped Gaussian process. Previously, estimation with wrapped
processes has been performed used complicated iterative optimisa-
tion or random sampling techniques. The recursive Bayesian algo-
rithm proposed here is simple to implement and computationally
economical by comparison. The proposed algorithm is applied to
phase parameter estimation.
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1. INTRODUCTION

Linear regression is a well-known procedure used to investigate
the dependence of a response variable on a number of explana-
tory variables. Mathematically, assume n measurements of the
response variable y1, . . . , yn, yt ∈ R and corresponding explana-
tory variables h1, . . . , hn, ht ∈ R

1×r which satisfy

yt = htθ + et, t = 1, . . . , n, (1)

where θ ∈ R
r is an unknown vector parameter and e1, . . . , en are

zero-mean random variables. The rst element of ht is taken to be
one. The problem of linear regression is to estimate θ.

There are certain cases of interest in which the response vari-
able is periodic. This occurs, for instance, if one measures direc-
tions or the times of events during a cycle [7]. Such observations
are said to be circular since they can be represented as a point on
the circumference of a circle. Analogously to linear regression, the
goal of circular regression is to investigate the dependence of a cir-
cular response variable on explanatory variables. Circular regres-
sion is used in a number of physical and biological applications
including studies of the dependence of wind direction on ozone
level [8] and of the dependence of direction on distance travelled
in animal migration [4]. More examples can be found in [7].

The von Mises distribution is a natural way to model circular
variables and has been widely used in circular regression [4, 6, 8].
Circular variables can also be modelled as wrapped processes [5,
10]. This will be the approach taken here. The circular response
variables x1, . . . , xn are then modelled as

xt = yt mod 2π, t = 1, . . . , n, (2)

where yt is given in (1). The problem is to estimate the parameter
θ given x = [x1, . . . , xn]′ where ′ denotes matrix transpose. It
will be assumed that e1, . . . , en are independent Gaussian random
variables with variance ρ2.

Estimation with the wrapped processes has previously been
considered in [5, 10]. Both algorithms use the equivalent sig-
nal model yt = xt + 2πkt where k1, . . . , kn are unknown in-
tegers, referred to as unwrapping variables. In [5] the expectation-
maximisation (EM) algorithm is used with x the incomplete, ob-
served data and the unwrapping variables the missing data. Ap-
plication of EM is complicated due to the need to evaluate in nite
summations. In [10] the idea of data augmentation, with xt, kt,
t = 1, . . . , n the augmented data, was used to develop a Markov
chain Monte Carlo technique for estimating θ.

The approach taken here is somewhat simpler than those of
[5, 10]. The key idea is that, conditional on a sequence of unwrap-
ping variables, θ can be optimally estimated in closed-form. In
order to apply this idea it is necessary to determine which of the in-
nite number of possible unwrapping sequences are most probably
correct. This is done by adopting a Bayesian framework in which
the validity of a particular unwrapping sequence can be measured
by its posterior probability. Since it is not possible to compute
the posterior probabilities of an in nite number of unwrapping se-
quences a recursive procedure is developed to eliminate unlikely
sequences. The proposed algorithm is simple to implement and
computationally undemanding. Although the Bayesian framework
permits it, there is no need to have accurate prior information re-
garding θ. The performance of the algorithm is demonstrated for
the problem of phase parameter estimation.

The paper is organised as follows. The exact posterior distri-
bution is derived in Section 2 and a scheme for approximating it
is developed in Section 3. Several issues related to the proposed
algorithm are discussed in Section 4 and an example application is
given in Section 5.

2. EXACT BAYESIAN ESTIMATION

The goal of Bayesian estimation is to compute the posterior prob-
ability density function (PDF) of the parameter of interest, in this
case θ. Once the posterior PDF is available quantities of interest
related to θ can, in principle, be computed. In particular, the pos-
terior mean is an optimal estimator of θ in the mean square error
sense. The exact posterior PDF, and hence the posterior mean, for
the circular regression problem will be derived in this section. The
notationN(z; μ,Σ)will be used to denote the Gaussian PDFwith
mean μ and covariance matrixΣ evaluated at z.

The basic elements of Bayesian estimation are a prior PDF for
θ and the likelihood of θ given the observations x. The prior PDF
will be taken to be

p(θ) = N(θ; θ̂0, Σ0), (3)

where θ̂0 and Σ0 are the prior mean and covariance matrix, re-

34411-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



spectively. The likelihood can be found, using (2) and (1), as

p(x|θ) =
X

k∈Zn

N(x; Hθ − 2πk, ρ2In), (4)

where Z = {0,±1,±2, . . .} and In is the n × n identity matrix.
Using Bayes’ rule, (3) and (4), the posterior PDF can be written as

p(θ|x) ∝ p(x|θ)p(θ)

=
X

k∈Zn

N(x; Hθ − 2πk, ρ2In)N(θ; θ̂0,Σ0) (5)

The following lemma is used to evaluate (5).

Lemma 1 Assume that z ∈ R
d,A ∈ R

d×m, x, μ ∈ R
m and that

B ∈ R
d×d Σ ∈ R

m×m are positive de nite matrices. Then,

N(z; Ax, B)N(x; μ,Σ) = N(z; Aμ, S)N(x; ν,Ω), (6)

where S = AΣA′ + B and, withK = ΣA′S−1,

ν = μ + K(z − Aμ),

Ω = Σ − KAΣ.

Proof: See [2].

Let x̂(k) = Hθ̂0 − 2πk, k ∈ Z
n, S = HΣ0H

′ + ρ2In

and G = Σ0H
′S−1. Then, applying Lemma 1 to (5) allows the

posterior PDF to be written as

p(θ|x) =
X

k∈Zn

γn(k)N(θ; θ̂n(k),Σn) (7)

where, for k ∈ Z
n,

γn(k) = N(x; x̂(k), S)

, X
d∈Zn

N(x; x̂(d), S) , (8)

θ̂n(k) = θ̂0 + G[x − x̂(k)], (9)
Σn = Σ0 − GHΣ0. (10)

The quantity γn(k) in (7) is the posterior probability of the un-
wrapping sequence k ∈ Z

n. Conditional on this unwrapping
sequence, the posterior distribution of θ is Gaussian with mean
θ̂n(k) and covariance matrixΣn. The posterior mean of θ can be
obtained from (7) as

θ̂ =
X

k∈Zn

γn(k)θ̂n(k). (11)

Eq. (11) can be thought of as a probabilistic unwrapping of the
circular observations, with estimates from each possible unwrap-
ping sequence weighted according to the posterior probability of
the unwrapping sequence. An important aspect of this estimator is
that the conditional means θ̂n(k) can be computed in closed-form.

An obvious problem with the estimator (11) is that it is not
possible to enumerate the countably in nite number of unwrap-
ping sequences. However a practical estimator can be realised
by considering only a relatively small number of unwrapping se-
quences. A recursive procedure for constructing the viable set of
unwrapping sequences will be described in the following section.
The motivation behind using a recursive procedure is that it allows
unlikely unwrapping sequences to be discarded based on the ob-
servations which have been processed.

3. APPROXIMATE BAYESIAN ESTIMATION

Throughout this section the notation xt = [x1, . . . , xt]
′ will be

used to denote the vector of the rst t observations. Similar nota-
tion will be used for unwrapping sequences. Using Bayes’ rule the
posterior PDF of θ using only the rst measurement is

p(θ|x1) ∝
∞X

k1=−∞
N(x1; h1θ − 2πk1, ρ

2)N(θ; θ̂0, Σ). (12)

Eq. (12) has an in nite number of terms and so cannot be evalu-
ated. However many of the terms are negligible and can be ignored
for practical purposes. The viability of an unwrapping variable can
be assessed by considering the prior measurement PDF,

p(x1, k1) =

Z
p(x1, k1|θ)p(θ) dθ = N(x1; x̂1(k1), s1), (13)

where x̂1(k1) = h1θ̂0 − 2πk1 and s1 = h1Σ0h
′
1 + ρ2. Eq. (13)

suggests selecting the set of viable unwrapping variables for t = 1
as

K̃1 = {k1 : |x1 − x̂1(k1)| <
√

s1Φ
−1(1 − α/2)} (14)

whereΦ is the distribution function of a standard Gaussian random
variable and α is the probability of excluding the correct unwrap-
ping sequence. The posterior PDF is then approximated by

p̃(θ|x1) ∝
X

k1∈K̃1

N(x1; h1θ − 2πk1, ρ
2)N(θ; θ̂0,Σ) (15)

Using Lemma 1 gives

p̃(θ|x1) =
X

k1∈K̃1

γ̃1(k1)N(θ; θ̂1(k1),Σ1) (16)

where, with g1 = Σ0h
′
1/s1 and ψ1(k1) = N(x1; x̂1(k1), s1),

γ̃1(k1) = ψ1(k1)

, X
d∈K̃1

ψ1(d) , (17)

θ̂1(k1) = θ̂0 + g1[x1 − x̂1(k1)], (18)
Σ1 = Σ0 − g1h1Σ0. (19)

The use of (14) to remove from consideration unlikely unwrapping
variables avoids the need to evaluate an in nite number of unwrap-
ping sequences. However, if sets of valid unwrapping sequences
are constructed simlarly to (14) for successive response variables,
the number of sequences considered after t steps will be exponen-
tial in t. Since this is computationally infeasible for any reasonable
t further reduction of the mixture (16) is required. The following
simple pruning scheme is used for this purpose. Order the poste-
rior probability approximations (17) as γ̃

(1)
1 > γ̃

(2)
1 > · · · > γ̃

(m̃)
1

where m̃ = |K̃1|. The set K̃1 of viable unwrapping variables is
reduced to

K1 = {k1 ∈ K̃1 : γ̃1(k1) ≥ ε} (20)

where ε = max(γ̃
(m)
1 , ε0) if m̃ > m and ε = ε0 if m̃ ≤ m. The

parameter m is the maximum allowable number of unwrapping
sequences and ε0 ∈ [0, 1) is a user-selected threshold. Then, the
nal approximation to the posterior PDF for t = 1 is

p̂(θ|x1) =
X

k1∈K1

γ̂1(k1)N(θ; θ̂1(k1),Σ1) (21)
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where γ̂1(k1) = γ̃1(k1)/
P

d∈K1
γ̃1(d). The procedure of (14)

and (17)-(20) is performed sequentially for t = 2, . . . , n to ob-
tain approximations of the posterior PDFs p(θ|xt). The main
difference for t = 2, . . . , n compared to t = 1 is that the PDF
p(θ|xt−1), which is the prior PDF at the tth recursion, will be a
Gaussian mixture rather than a single Gaussian. Thus it is neces-
sary to contruct sets as in (14) for each component of the mixture
with the preliminary set of viable unwrapping sequences the union
of these sets. The complete procedure, to be referred to as the
Bayesian unwrapping algorithm (BUA), is summarised in Table 1.

Table 1: Recursive procedure for approximating the posterior
mean.

1. SetK0 = 0, γ̂0(0) = 1, θ̂0(0) = θ̂0.
2. For t = 1, . . . , n:

(a) Compute st = htΣt−1h
′
t + ρ2, gt = Σt−1h

′
t/st.

(b) For kt−1 ∈ Kt−1, construct the set

K̃t(kt−1) = {kt : |xt − x̂t(kt)| <
√

stΦ
−1(1 − α/2)}

where x̂t(kt) = htθ̂t−1(kt−1) − 2πkt.
(c) Set

K̃t =
[

kt−1∈Kt−1

K̃t(kt−1)

(d) For kt ∈ K̃t, compute

ψt(kt) = N(xt; x̂t(kt), st)γ̂t−1(kt−1),

θ̂t(kt) = θ̂t−1(kt−1) + gt[xt − x̂t(kt)].

(e) For kt ∈ K̃t, normalise the posterior probabilities

γ̃t(kt) = ψt(kt)

, X
dt∈K̃t

ψt(dt) .

(f) Construct the setKt = {kt ∈ K̃t : γ̃t(kt) ≥ ε}.
(g) For k ∈ Kt, re-normalise the posterior probabilities

γ̂t(kt) = γ̃t(kt)

, X
dt∈Kt

γ̃t(dt) .

(h) Compute Σt = Σt−1 − gthtΣt−1.

3. Compute the estimate

θ̂ =
X

kn∈Kn

γ̂n(kn)θ̂n(kn).

4. DISCUSSION

In this section several points of interest regarding the BUA pro-
posed in Section 3 will be discussed. These are enumerated below.

1. In order to ensure identi ability of the parameter θ it is
necessary to restrict its range. For example, the constant offset

must satisfy α ≤ θ1 < 2π + α for some α ∈ R. More generally
the range of allowable values of θ will depend on the explanatory
variables h1, . . . , hn.

2. The BUA requires speci cation of a prior PDF for θ (3).
This does not prevent the BUA being used for estimation of deter-
ministic parameters provided that the effective support of the prior
covers the range of allowable parameter values. The prior has little
effect on algorithm performance if the number n of observations
is reasonably large.

3. Nonlinear estimators are subject to thresholding whereby
the estimator variance increases dramatically for noise levels above
a threshold level. Since linear estimators, such as θ̂n(kn), do not
exhibit thresholding, it is evident from (11) that thresholding will
occur solely due to an inability to unambiguously unwrap the cir-
cular response variables via the posterior probabilities γn(kn).

4. The posterior mean, or its approximation via Table 1, can
be unduly in uenced by lowly, but still appreciably weighted un-
wrapping sequences. This is particularly so for large noise vari-
ances and/or small sample lengths. In such cases it has been found
more reliable to use the estimator θ̂ = θ̂n(k∗

n) where

k∗
n = arg max

kn∈Kn

γ̂n(kn). (22)

5. EXAMPLE: PHASE PARAMETER ESTIMATION

The proposed algorithm will be applied to an important problem
in signal processing, that of estimating the parameters of a phase
modulated signal embedded in additive noise. The complex-valued
observations are modelled by, for t = 1, . . . , n,

zt = exp(jhtθ) + wt, (23)

where w1, . . . , wn are independent complex-valued Gaussian ran-
dom variables withE(wt) = 0, E(w2

t ) = 0 and E|wt|2 = σ2. The
row vectors h1, . . . , hn contain the values of the basis functions
used to t the phase. Polynomials are a commonly used basis in
which case ht = [1, t, . . . , tq] for a qth order polynomial and (23)
is referred to as a polynomial phase signal (PPS). The problem is
to estimate θ from the observations z1, . . . , zn.

In [11] it is shown that, for suf ciently high SNR,

∠zt ≈ yt mod 2π, t = 1, . . . , n, (24)

where yt satis es (1) with ρ2 = σ2/2. According to (24) the
BUA can be applied to the time series ∠z1, . . . , ∠zn to estimate
the parameter θ. A better approximation can be obtained by using
the true variance,

ρ2 = var
»
arctan

„
V

1 + U

«–
(25)

where V, U ∼ N(0, σ2/2) are independent. To ensure identi a-
bility we must have θ ∈ Θ =

Qq
i=0(−π/i!, π/i!]. The prior PDF

is chosen so that parameters in Θ are reasonably well supported.
The prior mean is θ̂0 = 0 and the prior covariance matrix isΣ0 =
diag(σ2

1 , . . . , σ2
q+1) where σ2

i+1 = (π/(4i!))2, i = 0, . . . , q. As
discussed in Section 4, the posterior mean conditional on the most
probable unwrapping sequence will be used rather than a weighted
sum of posterior means as in Table 1.

The proposed algorithm will be compared with existing meth-
ods. Many algorithms have been proposed in the literature for pa-
rameter estimation of PPS. Maximum likelihood (ML) estimates
can be computed via a q-dimensional iterative optimisation. The
main concern is that a reasonably accurate initialisation is required
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to avoid converging to a local maximum. The method of [1] allevi-
ates but does not remove this requirement. Prominent alternatives
to ML estimation include the polynomial phase transform (PPT)
[9] and the phase unwrapping least-squares algorithm (PULSA)
of [3]. Both of these methods use the result that differencing re-
duces the order of a polynomial by one. In the PPT this results in
a scheme in which the q-dimensional optimisation of the ML es-
timate is replaced by a series of one-dimensional optimisations to
successively compute estimates of θq+1, θq, . . . , θ1. The PULSA
uses the approximation (24) and the fact that the qth differenced
phase is equal to a constant plus noise to unwrap the phase.

The performances of the BUA, the PPT and the PULSA will
be compared for a cubic phase with n = 100 observations. Two
experiments are performed. In the rst experiment,

θ =
ˆ

π/5 π/4 −2π × 10−3 −5π × 10−5
˜′

. (26)

The parameters in (26) are selected to be within the dynamic range
of the PPT, which is much smaller than those of the BUA and
PULSA. By necessity some of these parameters are close to zero
which is the prior mean for the BUA. Although this may appear
favourable to the BUA it is not really because the prior covariance
matrix is quite large meaning that little prior con dence is placed
in the prior mean. To demonstrate this a second experiment in
which all parameters are far from zero is performed:

θ =
ˆ

π/5 π/4 −π/10 −π/18
˜′

. (27)

Note that the PPT cannot be used to estimate these parameters.
The signal-to-noise ratio (SNR), de ned as−10 log10(σ

2), is var-
ied between 0 dB and 20 dB. Estimator standard deviations are
computed over 1000 realisations for each SNR. The results for
both experiments are shown in Figure 1 for the parameter θ4. The
Cramér-Rao bound (CRB) is also shown. The two important as-
pects of algorithm performance are the threshold SNR and the ac-
curacy at SNRs above the threshold SNR. For both experiments the
BUA has by far the lowest threshold SNR. In experiment one, the
BUA threshold is 6 dB lower than the PPT threshold and 12 dB
lower than the PULSA threshold. In experiment two it is 15 dB
lower than the PULSA threshold. The BUA and the PULSA per-
form equally above their respective thresholds with the standard
deviations of both estimators achieving the CRB at high SNRs.
The standard deviation of the BUA is slightly larger than the CRB
for small SNRs due to the use of the high SNR approximation (24).

The computational expense of the BUA depends on the SNR.
Although the BUA is more computationally demanding than the
PPT and PULSA for all SNRs, the difference is small for high
SNRs, when the phase can be unwrapped with little ambiguity,
and large for low SNRs, when phase unwrapping can be done re-
liably only by retaining many candidate unwrapping sequences. A
major part of the dif culty in unwrapping the phase at low SNRs
is a break down of the Gaussian assumption. In particular, for
low SNRs, the noise in ∠zt follows a distribution with a heavier
tail than the Gaussian distribution. The resulting occurence of un-
modelled outliers makes phase unwrapping dif cult.

6. CONCLUSIONS

The problem of circular regression, in which the aim is to quan-
tify the dependence of a circular response variable on explanatory
variables, was considered. The algorithm proposed here uses a
wrapped Gaussian process to model the circular response vari-
ables. The principal concern in such a model is to unwrap the
circular variables. A recursive Bayesian algorithm was proposed

st
d(

θ̂ 4
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dB
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dB
)
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Figure 1: Standard deviations of the BUA (solid), PPT (dashed)
and PULSA (dash-dot) estimators of θ4 plotted against SNR for
experiment one (top) and experiment two (bottom). The dotted
line is the CRB. The signal has a cubic phase and n = 100.

for this purpose. The proposed algorithm was successfully applied
to the problem of phase parameter estimation. An important area
for future work is the extension of the algorithm to estimation of
the scaling parameter.
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