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ABSTRACT
This paper addresses the problem of unmixing hyperspectral images
contamined by additive colored noise. Each pixel of the image is
modeled as a linear combination of pure materials (denoted as end-
members) corrupted by an additive zero mean Gaussian noise se-
quence with unknown covariance matrix. Appropriate priors are de-
fined ensuring positivity and additivity constraints on the mixture
coefficients (denoted as abundances). These coefficients as well as
the noise covariance matrix are then estimated from their joint pos-
terior distribution. A Gibbs sampling strategy generates abundances
and noise covariance matrices distributed according to the joint pos-
terior. These samples are then averaged for minimum mean square
error estimation.

Index Terms— Bayesian inference, Monte Carlo methods, spec-
tral unmixing, hyperspectral images.

1. INTRODUCTION AND PROBLEM FORMULATION

The spectral unmixing problem has received considerable attention
in remote sensing, signal and image processing (see for instance
[1] and references therein). Most spectral unmixing procedures as-
sume that the observed spectrum of a mixed pixel is linearly mixed
by a number of so-called endmembers with corresponding fractions
referred to as abundances. More precisely, according to the lin-
ear mixing model (LMM) presented in [1], the L-spectrum y =
[y1, . . . , yL]T of a mixed pixel is assumed to be a linear combina-
tion of R spectramr corrupted by additive Gaussian noise:

y =
R�

r=1

mrαr + n, (1)

where mr = [mr,1, . . . , mr,L]T denotes the spectrum of the rth

material, αr is the fraction of the rth material in the pixel, R is
the number of pure materials (or endmembers) present in all the ob-
served scene and L is the number of available spectral bands for the
image. The R endmembers spectra mr are assumed to be known
in this paper. In practical applications, they can be obtained by an
endmember extraction procedure such as the well-known N-finder
(N-FINDR) algorithm developed by Winter [2]. Due to physical
considerations, the fraction vector satisfies the following positivity
and additivity constraints:

�
αr ≥ 0, ∀r = 1, . . . , R,�R

r=1 αr = 1.
(2)

A classical assumption in hyperspectral imagery is that the noise
vector n = [n1, . . . , nL]T is white and Gaussian [3, 4]. However,

due to their intrinsic functioning, some actual spectrometers can pro-
vide hyperspectral images affected by colored noise [5].

This paper studies a new Bayesian linear unmixing algorithm
for additive colored Gaussian noise. This algorithm allows one to
analyze the impact of noise correlation on spectral unmixing. Ap-
propriate prior distributions are chosen for the abundances to satisfy
the positivity and additivity constraints, as in [6]. The noise vector
n is assumed to be zero-mean Gaussian with covariance matrix Σ1

of dimension L × L, denoted as n ∼ N (0L,Σ) (where 0L is the
vector made of L zeros). A conjugate inverse Wishart distribution
is then chosen for the covariance matrix Σ. This prior reduces to a
product of inverse gamma distributions when the noise sequence is
independent and identically distributed (i.i.d.) as in [6]. The hyper-
parameters associated to the Bayesian unmixing model are assigned
vague hyperpriors resulting in a hierarchical Bayesian model. The
posterior distribution of the corresponding unknown model parame-
ters is then derived. A Gibbs sampler is finally proposed to generate
samples according to this posterior and to compute the minimum
mean square error (MMSE) estimator of the unknown parameters.

The paper is organized as follows. The posterior distribution
of the abundances and noise covariance matrix is derived in Section
2. Section 3 studies the Gibbs sampling strategy which generates
samples distributed according this posterior. Simulation results are
presented in Section 4. Conclusions are reported in Section 5.

2. HIERARCHICAL BAYESIAN MODEL

The likelihood and the priors inherent to the proposed hierarchi-
cal Bayesian model are defined for the spectral unmixing of hy-
perspectral images. A particular attention is devoted to defining
abundance prior distributions satisfying positivity and additivity con-
straints. The noise correlation is also taken into account by specify-
ing an inverse Wishart prior for the noise covariance matrix.

2.1. Likelihood

The linear mixing model defined in (1) and the statistical properties
of the noise vector n lead to y ∼ N �M+α+,Σ

�
, where M+ =

[m1, . . . ,mR] and α+ = [α1, . . . , αR]T. As a consequence, the

1The covariance matrix of the colored noise should depend on mr and
αr , r = 1, ..., R, in order to ensure positivity of the spectral components
y1, ..., yL. However, choosing a noise covariance matrix independent of
the endmembers and abundances provides a much simpler statistical model
which is satisfactory as soon as

�R
r=1 mrαr is not too small (see [1, 3, 4]

for a similar assumption in the white noise case).
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likelihood function can be expressed as:

f
�
y|α+,Σ

� ∝ |Σ|− 1
2 exp

�
−1

2

��y − M+α+
��2

Σ−1

�
, (3)

where ∝ means “proportional to”, |·| stands for the determinant and
‖·‖P is the Euclidian norm derived from theP-scalar product 〈x,y〉P =

xTPy, P being a L × L positive definite Hermitian matrix.

2.2. Parameter priors

2.2.1. Abundance prior

The abundance vector can be re-written as α+ = [αT, αR]T with
α = [α1, . . . , αR−1]

T and αR = 1 −�R−1
r=1 αr . A uniform distri-

bution on the simplex S is chosen as prior distribution for α:

f (α) ∝ 1S(α), (4)
where 1S(.) is the indicator function defined on

S =

�
α
��αr ≥ 0, ∀r = 1, . . . , R − 1,

R−1	
r=1

αr ≤ 1



. (5)

This prior ensures the abundances satisfy the positivity and additivity
constraints and reflect the absence of additional knowledge regard-
ing these parameters.

2.2.2. Noise covariance matrix prior

The prior distribution for the covariance matrixΣ is an inverseWishart
distribution with ν degrees of freedom and meanD:

Σ|ν,D ∼ W−1
L ((ν − L − 1)D, ν) , (6)

where ν is a fixed hyperparameter2. The probability density function
(pdf) ofΣ, conditionally toD can then be written [7]:

f (Σ|ν,D) =
(ν − L − 1)

ν
2 |D| ν

2

c (L, ν) |Σ| (ν+L+1)
2

etr

�
−1

2
(ν − L − 1)Σ−1D

�
,

(7)
where |.| and etr{.} stand for the determinant and the exponential of
the trace of the matrix between braces, and c (L, ν) is a normaliza-
tion constant:

c (L, ν) = 2
Lν
2 π

L(L−1)
4

L
i=1

Γ

�
ν − L + i

2

�
, (8)

where Γ (·) denotes the Gamma function. The inverse Wishart dis-
tribution is a conjugate prior for Σ. The parameter ν allows one to
adjust the amount of prior knowledge we have regardingΣ. Indeed,
straightforward computations lead to:

var [Σ|ν,D] =
(ν − L + 1)D2 + (ν − L − 1) tr {D}D

(ν − L − 3) (ν − L)
, (9)

which approaches 0 when ν increases. Therefore, the distance be-
tween Σ and D is directly related to the value of ν. Moreover, the
chosen inverse Wishart distribution ensures that the mean ofΣ isD.
In the context of linear spectral unmixing, we propose to consider a

2The hyperparameter ν has to satisfy the condition ν > L + 3 in or-
der to ensure the existence of the mean and variance of the inverse Wishart
distribution.

diagonal hyperparameter matrixD = γIL, where γ is a positive ad-
justable hyperparameter. This particular choice reflects the fact that
the noise variances change from one spectral band to another but not
significantly3. In this case, the noise covariance matrix prior can be
written:

f (Σ|ν, γ) ∝ γ
νL
2

|Σ| (ν+L+1)
2

etr
�
−γ

2
(ν − L − 1)Σ−1

�
. (10)

2.3. Hyperparameter priors

The prior of γ is a non-informative Jeffrey’s prior:

f (γ) ∝ 1

γ
1R+(γ). (11)

This prior reflects the lack of knowledge regarding the hyperpara-
meter γ. The hyperparameter ν which adjusts the distance between
Σ and D (or equivalently the amount of available prior informa-
tion) is fixed in the proposed implementation because this choice
has not appeared to be critical in our simulations. However, a modi-
fied hierarchical algorithm allowing one to estimate ν could also be
developed.

2.4. Posterior distribution of θ

The posterior distribution of the unknown parameter vector θ =
{α,Σ} can be computed from the following hierarchical structure:

f(θ|y) =

�
f(θ, γ|y)dγ ∝

�
f(y|θ)f(θ|γ)f(γ)dγ, (12)

where f (y|θ) and f (γ) have been defined in Eq.’s (3) and (11).
Moreover, by assuming a priori independence betweenΣ andα, the
following result can be obtained:

f
�
θ
��γ� = f (α) f

�
Σ
��ν, γ

�
. (13)

This hierarchical structure allows one to integrate out the hyperpara-
meter γ from the joint distribution f (θ, γ|y), yielding:

f (θ|y) ∝ �
tr
	
Σ−1
�− νL

2 |Σ|− ν+L+1
2

× exp

�
−1

2

��y − M+α+
��2

Σ−1


1S(α),

(14)

where tr {·} is the trace operator. Of course, this posterior distri-
bution it too complicated to derive the MMSE or the maximum a
posteriori estimator of θ. The next section studies a Gibbs sampling
strategy which generates abundances and noise covariance matrices
distributed according to the full posterior (14).

3. GIBBS SAMPLER

The Gibbs sampler generates samples distributed according to the
full conditional distributions, i.e. alternatively according to f(α|Σ,y)
and f

�
Σ
��α,y

�
, as detailed below.

3.1. Generation of samples distributed according to f(α|Σ,y)

By denoting M = [m1, . . .mR−1], straightforward computations
yield:

f (α|Σ,y) ∝ exp

�
− (α − μ)T Λ−1 (α − μ)

2

�
1S(α), (15)

3A more general algorithm could be derived by assuming D is any di-
agonal matrix. However, the proposed strategy with D = γIL is a direct
generalization of the algorithm derived in [6] for colored noise.
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where�����
����

Λ =

��
M − mRuT

�T

Σ−1
�
M − mRuT

��−1

,

μ = Λ

��
M − mRuT

�T

Σ−1 (y − mR)

�
,

(16)

with u = [1, . . . , 1]T ∈ R
R−1. As a consequence, α|Σ,y is dis-

tributed according to the following truncated Gaussian distribution:

α|Σ−1,y ∼ NS (μ,Λ) . (17)

Note that this conditional distribution is concentrated on the simplex
S. Consequently, the generated abundances satisfy the positivity and
additivity constraints, as requested.

3.2. Generation of samples distributed according to f
	
Σ


α,y

�
To sample according to f

	
Σ


α,y

�
, it is very convenient to generate

samples distributed according to the joint distribution f
	
Σ, γ



α,y
�

by using the following two-step procedure:

3.2.1. Generation of samples according to f
	
γ


Σ, α,y

�
The posterior distribution of the hyperparameter γ is:

γ|α,Σ,y ∼ G
�

νL

2
,
ν − L − 1

2
tr

Σ−1�� , (18)

where G (a, b) is the Gamma distribution with parameters a and b.

3.2.2. Generation of samples according to f
	
Σ


γ, α,y

�
Straightforward computations show that the posterior distribution of
Σ is an inverse Wishart distribution:

Σ


γ, α,y ∼ W−1

L

�
γ (ν − L − 1) IL + zzT, ν + 1

�
, (19)

where z = y − M+α+.
The final Gibbs sampler is summarized in the algorithm below:

ALGORITHM 1:
Gibbs sampler for linear hyperspectral unmixing

• Initialization:

– SampleΣ(0) from the pdf in Eq. (6),
– Set t ← 1,

• Iterations: for t = 1, 2, 3, . . . , do

– Sample α(t) from the pdf in Eq. (17),

– Sample γ(t) from the pdf in Eq. (18),

– SampleΣ(t) from the pdf in Eq. (19),

4. SIMULATIONS

This section illustrates the performance of the proposed abundance
estimation procedure in the presence of additive colored Gaussian
noise. For this, we consider a synthetic pixel resulting from the com-
bination of three endmembers representative of a urban or suburban
environment: green grass, bare red brick and galvanized steel metal.
These endmembers have been extracted from the spectral libraries
distributed with the ENVI package [8, p. 1035]. The proportions of

these components (i.e. abundances) are α1 = 0.05, α2 = 0.6 and
α3 = 0.35, respectively. The number of spectral bands is L = 413.
The observations have been corrupted by an additive zero-mean col-
ored Gaussian noise n with covariance matrix Σ. The L × L def-
inite positive matrix Σ has been randomly drawn from an inverse
Wishart distributionW−1

L (ν, (ν − L − 1)D)with meanD = γIL.
All simulations presented in this section have been obtained with
γ = 4.8 × 10−3. This value of γ corresponds to an average SNR:

ASNR =
1

γL

�
�M+α+

�
�

2
= 15dB. (20)

The degree of freedom ν of the inverse Wishart distribution has been
chosen as ν = L + 3 + η, η ∈ N

∗, in order to ensure the existence
of the mean and variance of the noise covariance matrix prior. To
understand the physical significance of the parameter η, consider
the limit case η � 1. For large values of η, the variance of the
Wishart distribution defined in (9) approaches 0. As a consequence,
the noise vector n reduces to an i.i.d. zero-mean Gaussian sequence
with variance γ. The 50× 50 first elements of the covariance matrix
Σ are represented in Fig. 1 for different values of the parameter η
(the largest coefficients ofΣ appear in white color). It can be clearly
seen that the matrix Σ tends to be diagonal when η increases. The
parameter η has been fixed to η = 30 in our simulations.

Fig. 1. The first 50 × 50 coefficients of the covariance matrixΣ for
different values of η (γ = 4.8 × 10−3).

The next figures show the performance of the proposed unmixing al-
gorithm. The endmember spectra corresponding to green grass, bare
red brick and galvanized steel metal, as well as the resulting spec-
trum of the mixed pixel are depicted in Fig. 2. Figure 3 shows the
posterior distributions of the abundances αr (r = 1, 2, 3) obtained
for NMC = 30000 iterations (including Nbi = 10000 burn-in iter-
ations). These distributions are in good agreement with the actual
values of α+ = [0.05, 0.6, 0.35]T. As a comparison, the poste-
rior distributions of the abundance coefficients estimated by the un-
mixing procedure of [6] assuming that the noise sequence is i.i.d.
are depicted in Fig. 3 (dotted lines). The variances of the estimated
abundances are clearly smaller when the noise correlation is taken
into account. This result is confirmed in Table 1 which reports the
means and variances of the abundance estimates for the two algo-
rithms (computed from 50Monte Carlo runs).
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Fig. 2. Top: endmember spectra: green grass (solid line), bare red
brick (dashed line), galvanized steel metal (dotted line). Bottom:
resulting spectrum of the mixed pixel.

It is interesting to note that the proposed algorithm generates
samples distributed according to the posterior distribution of the co-
variance matrix Σ. These samples can be used to extract useful in-
formation regarding the noise affecting hyperspectral images. As an
example, the posteriors of two diagonal elements of Σ are depicted
in Fig. 4, illustrating that the noise correlations are small compared
to their variances.

Fig. 3. Posterior distributions of the abundances [α1, α2, α3]
T esti-

mated by the proposed algorithm (continuous lines) and by the algo-
rithm in [6] (dotted lines).

5. CONCLUSIONS

A new hierarchical Bayesian unmixing algorithm was derived for
hyperspectral images corrupted by additive colored Gaussian noise.
The results obtained on synthetic signals showed that assuming the
noise is i.i.d. can result in poor abundance estimations if the noise

Table 1. Means and variances of the abundance estimates computed
from 50Monte Carlo runs.

Proposed approach Approach in [6]

E [�α1] 0.050 0.052

E [�α2] 0.600 0.594

E [�α2] 0.350 0.354

var [�α1] 1.8 × 10−4 5.9 × 10−4

var [�α2] 7.4 × 10−4 2.8 × 10−3

var [�α2] 5.5 × 10−4 2.2 × 10−3

Fig. 4. Posterior distributions of typical diagonal and off-diagonal
elements ofΣ.

is correlated. Future investigations include the study of unmixing
algorithms for the joint estimation of endmembers and abundances.
It would also be interesting to generalize the proposed approach to
more sophisticated noise models described by statistical mixtures [9]
or sums of several multivariate normal probability distributions [10].
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