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ABSTRACT

This paper proposes a frequency-based approach for back-
ground noise suppression with consideration for human psy-
choacoustics. The approach utilizes a perceptual cost func-
tion analysis based on temporal masking thresholds. By opti-
mizing the cost function, the concept eliminates background
noises that mask the original signals, while maintaining the
minimum perceptual distortion of the original signals. The
perceptual cost function can also be implemented within a
Gibbs sampling framework, which better models the uncer-
tainty within the original signal. These approaches improve
existing noise reduction techniques, enhancing perceived au-
dio quality (PEAQ), Mean Opinion Score (MOS), and signal
to noise ratio (SNR).

Index Terms— costs, noise, signal reconstruction, speech
processing, statistics

1. INTRODUCTION

Using portable audio recorders or wireless communication in
anoisy environment—such as recording voice mail or making
news reports at a bus station—greatly reduces the perceptual
quality of signals. Many noise suppression filters attempt to
attenuate the background noises, sometimes with the assis-
tance of a second microphone [10]. However, if the signal
to noise ratio (SNR) is very low, suppression filters may dis-
tort the original signals while reducing the background noises,
thereby, failing to improve the overall perceptual quality and
intelligibility [14]. Modified filters [15] that attempt to over-
estimate the underlying original signals or use an extra spec-
tral floor to mask the musical noises [2] may improve the per-
ceptual quality, but may not necessarily optimize the percep-
tual quality of the signals. Therefore, this paper proposes a
perceptual cost function to improve upon these filters.

2. PROBABILITY MODEL FOR THE NOISY SIGNAL

The Fourier expansion coefficients of the observed noisy sig-
nal with spectral component at frequency bin k is

1-4244-1484-9/08/$25.00 ©2008 IEEE

3429

Y. = X + Dy

where Y}, represents the observed noisy signal, X}, represents
the original signal, and D}, represents the background noise.

If we assume the Fourier expansion coefficients of the
original signal X}, and the background noise Dy, they may
be modelled as statistically independent, zero mean, Gaussian
random variables, and the posterior probability of the magni-
tude of the underlying clean signal p(a|Y%) can be modelled
as a Rician distribution [2]:
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3. THE PERCEPTUAL COST FUNCTION

We here propose a cost function C'(ag, ay) for our estimate
ay, of aj, based on the perceptual masking thresholds

Clak, ar) = C1(a, ar) + wi(|Yy'| — ax)? (2)

where C1 (ay, ax) is a square cost function based on the
masking threshold (as proposed in [16]):

2

(dk — ak)z —my, lf|&k — ak\ > my

Ci(ay,ar) = {

0 otherwise.

o wi (Y| — ax)? is a least processing term, which is
used to penalize unnecessary processing of the original
audio, when the audio is active

e wj is a weighting factor for the least processing term

e Gy is the estimated magnitude of the original signal X},
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e my is a perceptual masking threshold
e Y, is the prior estimate of original signal X},

e v is an approximate signal activity indicator for each
frame, obtained by the threshold of the average frame
energy'. For instance, v = 1 for active signal frames
and v = 0 for inactive signal frames

Further, the confidence weighting w;, and the prior esti-
mate Y} are adapted as follows:

For active signal frames (i.e., v = 1), wy is chosen to be
<0.5, and Y;* = Y}; for inactive signal frames (i.e., v = 0),
wy, 1s chosen to be >3, and Y, = 0. Generally, ay, is close to
zero for inactive frames, where ay, tends to approach my,.

The perceptual masking threshold, my, can be calculated
by using standard procedures of both simultaneous and tem-
poral masking, see [1] [5] [12] [11] [16] [18]

In addition, we adopt perceptual optimality criteria by us-
ing perceptual risk Ry, concept [16] wherein Ry, is defined as
the expected cost:

Ri £ E[C(ax,ax)]

/ pyi (Vi) / ik, a1)Pay v (0 Vi dardy,

—0o0

Because our cost function C'(ag, ay) is non-negative, to ob-
tain the optimal Bayesian estimate, only the inner integral
of the expected cost with respect to p(ay|Y:) need be min-
imized. Subsequently, the optimal a; which minimizes the
perceptual risk Ry can be determined by the following equa-
tion:

&f = argmin/ Clak, ar)p(ar|Yy)dag 3)
ar Jq,

inner integral of Ry,

4. IMPLEMENTATION OF SOFT DECISION
PERCEPTUAL COST FUNCTION

A soft decision hypothesis model [10] is adopted to further
classify and estimate active signal components, wherein H} is
used to indicate the hypothesis when audio is present, and H}
is used to indicate the hypothesis when audio is not present.
The binary hypothesis indicator (H./H}) is applied to all
signal components. When =0, prior probabilities are fixed
as (p(H})=0.01 and p(H?)=0.99).When ~=1, for each fre-
quency bin k, prior probabilities p(H}) and p(H})) are deter-
mined from pre-classified audio signal examples of the cat-
egory (male/ female) as those used in the noise suppression
procedure. The posterior distribution can be modified [2]:

IThe first few frames of the audio file is assumed to be inactive frames.
The threshold value obtained by taking the average power specturm | Y% |2 of
these frames is used to determine

plar|Ye) = plan|Hy,, Ye)p(H L Yi)+p(ak | H, Yi)p(HE|Yy)
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By setting the derivative of spectral amplitude estimator
Ww.r.t. Gy to zero, the minimal risk Ry Eq. (3) can be simplified
to:

&k:dk+wk|Yk*|+ Jo " (agmag) [R(ax)U+6 (ax)Vday,
1+w;

(%)

where ay, is the mean of the posterior distribution p(a|Y})

Eq. (4). The integral can be solved with an iterative method:

ay, 1s first chosen as ay and the integral is approximated
using a Trapezoidal Summation; after which, the LHS of Eq.
(5) can be calculated. A new ay, is then used as aj to com-
pute the RHS integral again. The process is iterated until ag
converges. The converged d;, value is denoted as 4§ .

It remains to specify the Gaussian variable terms (Ai and
M) required for the computation of Eq. (5). The first Gaussian
variable ,\ﬁ is measured from a secondary microphone BZ.
The second Gaussian variable )} is estimated using the ob-
tained value of A and a standard soft-decision estimate of a;,
[10], denoted as a™.

5. IMPLEMENTATION WITH GIBBS SAMPLER

In the previous section, A} is crudely estimated using the sec-
ondary microphone B. The method could result in residual
musical noise due to filtering [2]. To better estimate the un-
certainty in A\, we use the Gibbs sampler’ [3] to sample A
and ay,.

In an ideal Bayesian framework, we would wish to solve
the following integral:

2Microphone B is assumed to be an essentially uncontaminated measure-
ment of the noise Dy,

3In this version of the model, no probabilistic hypothesis switching
(H,i/Hg) is applied.
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p(ak|Yk, A;) can be represented as a standard Rician dis-
tribution Rice(sg,ok): Eq. (1),
AL
2(A74+2¢)°

ALY
AT+

where o, = Sk =

In addition, because only the mean of a;, is required to
minimize the perceptual cost function, a; is determined with
the mean value of Rician distribution [13]:

A = O/ 7T/2L1/2(—8k2/20'k2)
where L(xz) denotes the Laguerre polynomial.

For active signal frames (i.e., v = 1), p(A;|Y%, ax) can be
obtained using the inverted Gamma distribution [17]

2
xT a
p(NelYe, ar) = IG(1 + s, ?k + V%)

A Gamma distributed prior probability is chosen [4], where
p(A%) = IG (5, },). 5 is a constant shape parameter and
1, is a constant scale parameter*.

Gibbs sampler steps are as follows, for iteration i=1,...,IN
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Finally, using the mean of the converged values of a( R
as a new mean estimate of the original signal ay, perceptual
risk Ry, can be minimized using Eq. (5). The integral can be
approximated as before and a;, can be determined by an itera-
tive method described in the previous section. The converged
ay, value is denoted as a2/ ¢ For inactive signal frames (i.e.,
~v = 0), a special randomizing procedure is adopted by draw-
ing Ay, from the prior distribution.

6. EXPERIMENTS AND RESULTS

To determine the SNR and PEAQ scores, background noise
Dy, and original signal X, are recorded separately with 8kHz
sampling rate and combined subsequently. The setup attempts
to simulate communication quality (G.711).

“In this implementation, consecutive signal frames (where v = 1) are
grouped together. For each group, the soft decision estimated signal &f T
used to estimate a, and A7, of the group. These values are fitted with inverted
Gamma distributions to determine the average value of »;, and v,
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Two identical Electret condenser microphones are used
for recordings. The two microphones (A and B) are about
30cm apart with Inter Level Difference (ILD) of about 6.5
(linear scale) which produces a small but imperceptible echo.
Because of this, the I LD is not taken into account. Inter Time
Difference (IT'D) is assumed to be zero for the sake of sim-
plicity.

The following examples show background noise suppres-
sion results of: an American male speaking in a noisy car
park, an American male speaking next to a noisy machine fan,
an American female speaking on a bus, and a British male
speaking in a truck.

As shown in the tables below, the perceptual cost func-
tion improves the PEAQ scores by as much as 0.8 points, the
MOS scores, by 1.7 points, and SNR, by 16.9 dB. The result is
represented as dkCT. When the perceptual cost function is ap-
plied to the Gibbs sampled signal, PEAQ scores, MOS scores,
and SNR can be improved further by removing the residual
musical noise. This signal is represented as a}’ ©. For loud
car park background noises, because of the constant shifting
of phases of the noises, the PEAQ scores, MOS scores, and
SNR of dﬁT are worse than the observed noisy signal Yy, as
suggested by [14]. In contrast, the perceptual cost function-
even with a poor estimate as mean value- is still capable of
improving the PEAQ scores, MOS scores, and SNR of the
observed noisy signal Y;. Audio samples of the results of
Multi-channel Bayesian Background Noise Suppression can
be found at:

http://www-sigproc.eng.cam.ac.uk/~h1309/ICASSP2008

The paper uses the following word phrases from the /EEE
Harvard Sentences (Open Speech Repository):

I: A gold ring will please most any girl (AM)

II: When you hear the bell, come quickly (AM)

III: The beauty of the view stunned the young boy (AF)
IV: The little tales they tell are false (BM)

AM: Speech of American Male

AF: Speech of American Female

BM: Speech of British Male

Y., dfT, &kCT, and d,i” ¢ are described in previous sec-

tions 2, 4, and 5

PEAQ scores

Audio sample | Y} apT [ alT | alc
I+ car -3.85 | -3.87 | -3.79 | -3.78
II + fan -3.67 | -3.69 | -3.18 | -3.16
II1 + bus -3.53 | -3.02 | -2.70 | -2.87
IV + truck -3.90 | -3.84 | -3.82 | -3.80
MOS scores

Audio sample | Y dfT dkCT d{cwc

I+ car 13112 |25 |24

IT + fan 1.7122 |3.0 | 3.1

I + bus 14129 |31 3.2

IV + truck 1.8 20 |25 |26




SNR (dB)

Audio sample | Yy apt | afT | alMc®
I+ car 4.01 234 | 4.77 | 4.80
II + fan 2.49 286 | 5.10 | 5.84
III + bus -14.11 | 2.35 | 2.79 | 2.92

IV + truck -14.42 | -1.00 | 0.47 | 0.48

7. CONCLUSION

The examples in the previous sections show the perceptual
cost function can improve frequency domain noise suppres-
sion filters; the examples also show how the perceptual cost
function can be implemented within a simple Gibbs sampling
framework. More complex sampling methods using Markov
Chain Monte Carlo (MCMC) [4] [3] [17] can be adopted to
improve the estimates of the original signal.

The perceptual cost function can also be applied to time
domain noise suppression filters in a time frequency frame-
work, where the time domain filtered signal is transformed
into frequency domain and then applied with perceptual cost
function suppression. Examples are GSM Buzz (Electromag-
netic Interference) removal [9] and missing audio interpola-
tion (click removal) [4] [8].

In addition, if two microphones are placed very close to
each other, /LD cues can be used to produce more accurate
results. An accurate filter could be adapted by minimizing
cost functions of LD cues [7].
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