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ABSTRACT

This paper considers the problem of estimating the state of non-
linear stochastic processes observed by spatially distributed sensor
nodes i.e, observations are taken by a network of sensor nodes. The
measurement process of each node is assumed to be some nonlinear
function of an unobservable process and is corrupted by gaussian
noise. We refer to a scenario in which all nodes in the network wish
to have near-optimal identical state estimate of the observed process
and there is no centralized computation center. Sensor nodes do not
have any global knowledge of the network topology and nodes are
allowed to communicate with only their nearest neighbors. Each
node applies a particle filtering algorithm to its own measurements
to generate an individual state estimated signal. These nodes based
estimated signals are then combined by using nonlinear distributed
fusion rule to produce improved state estimated signal at each node.
We demonstrate through numerical example that the performance
of fused state estimated signal is superior to the performance of the
state estimated signal generated by particle filtering algorithm.

Index Terms— Nonlinear state estimation, distributed nonlinear
fusion, sensor networks

1. INTRODUCTION

Particle filtering is appropriate for the state estimation of nonlinear
stochastic dynamical system from noisy observations and has gained
significant attention in many diverse fields such as signal processing,
statistics, robotics, wireless communication and target tracking. It
is a numerical scheme that approximates the theoretical conditional
probability density function (pdf) of the state by a set of random par-
ticles [1-6].
A sensor network consists of a number of spatially distributed sen-
sor nodes which have communication and computational capabilities
for carrying out signal processing tasks and disseminating data [7,8].
This network of nodes can be utilized to record noisy observations of
time varying state of an object moving in a sensor field and to carry
out computation on their data.
As the observation process is distributed across sensor nodes, we are
faced with the problem of distributed state estimation for nonlinear
stochastic process. Distributed state estimation is more complicated
than the centralized state estimation. For linear stochastic system, a
decentralized Kalman filter algorithm was proposed in [18] which
requires each node to communicate with every other node. This
requirement is not suitable for large scale network such as sensor
network. An alternative strategy is to allow nodes to communicate
locally and this is considered in [12].

Since every node cannot communicate with every other node, a new
question arises, i.e. what information need to be exchanged among
the neighboring nodes: node’s estimates or node’s observations. The
combining of estimates from individual nodes at a central level or in
a distributed fashion has been given a great deal of attention in the
literature. The fusing of node’s data to compute quantities such as
average and least square estimates in distributed fashion was inves-
tigated in [13,16,17] and was extended to time varying signals in
[14,15] using consensus filter. The centralized scheme for the fusion
of state estimates of linear stochastic process generated by sensors
was studied in [9,10,11].
To our knowledge, the problem of fusing state estimated signals gen-
erated by network of nodes for nonlinear stochastic signals has not
been investigated either in centralized or distributed fashion.
In this paper, we aim to develop nonlinear distributed fusion rule for
combining nonlinear state estimated signals which are generated by
individual nodes through the application of particle filtering algo-
rithm to their noisy observations such that each node in the network
can have a good estimate x̂i(k) of the state xk. The organization of
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Fig. 1. Fusion of local nonlinear state estimated signals generated
by sensor nodes using particle filtering

this paper is as follows: Section 2 is devoted to provide some back-
ground material on the particle filtering and Monte Carlo simulation
for nonlinear state space model. Section 3 describes the nonlinear
distributed scheme for the fusion of state estimated signals and ap-
plication to sensor network. Section 4 contains numerical example
and simulation results which compare the performance of individual
state estimated signal with the performance of improved state esti-
mated signal. Finally, conclusions are drawn in Section 5.
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2. PARTICLE FILTER AND MONTE CARLO
SIMULATION

Suppose the state space model along with the observation model of
a random vector evolving over time is given as:

xk = fk(xk−1, uk−1)

zk = hk(xk, vk) (1)

By combining the prior density function of the dynamic random vari-
able of interest and the likelihood function of the observations, we
can formulate a posterior density of dynamic random variable as fol-
lows:
The sequence of random variable (xk, k ∈ N), xk ∈ Rnx is as-
sumed to be an unobserved Markov process with prior density π(x0)
and transition density π(xk|xk−1). The measurement history up to
time k − 1, Hk−1 = (zk−1, k ∈ N) and up to time k, Hk =
(zk, k ∈ N), where zk ∈ Rnz . We are interested in the probability
density function of xk conditioned on the entire measurement his-
tory up to time k , i.e. π(xk|Hk). Once this density is described
explicitly, the optimal state estimate at time k can be determined.
To begin the derivation, we need to know the conditional probability
density function before time k i.e. π(xk−1|Hk−1) and find a way to
propagate this density forward through the next measurement time
to generate the desired density i.e. π(xk|Hk).

π(xk|Hk) =
π(xk,Hk)

π(Hk)
also π(xk|Hk) = π(xk|zk,Hk−1)

π(xk|Hk) = π(xk|zk,Hk−1) =
π(xk, zk,Hk−1)

π(zk,Hk−1)

but π(xk, zk,Hk−1) = π(zk|xk,Hk−1)π(xk,Hk−1)

hence π(xk|Hk) =
π(zk|xk,Hk−1)π(xk,Hk−1)

π(zk,Hk−1)

using π(xk,Hk−1) = π(xk|Hk−1)π(Hk−1)

and π(zk,Hk−1) = π(zk|Hk−1)π(Hk−1)

hence π(xk|Hk) =
π(zk|xk,Hk−1)π(xk|Hk−1)

π(zk|Hk−1)
(2)

We can evaluate the conditional marginal of xk and zk in (2) by
using prior, π(xk−1|Hk−1), joint density, π(xk, xk−1) , and joint
density, π(zk, xk) as below:

π(xk|Hk−1) =

�
π(xk, xk−1|Hk−1)dxk−1

=

�
π(xk|xk−1,Hk−1)π(xk−1|Hk−1)π(Hk−1)

π(Hk−1)
dxk−1

π(xk|Hk−1) =

�
π(xk|xk−1,Hk−1)π(xk−1|Hk−1)dxk−1 (3)

and similarly the likelihood for observation

π(zk|Hk−1) =

�
π(zk|xk,Hk−1)π(xk|Hk−1)dxk (4)

We can summarize (2)-(3), the recursive bayesian filter in two steps
at each time k as follows:
Prediction

π(xk|Hk−1) =

�
π(xk|xk−1,Hk−1)π(xk−1|Hk−1)dxk−1 (5)

Correction:

π(xk|Hk) =
π(zk|xk,Hk−1)π(xk|Hk−1)

π(zk|Hk−1)
(6)

The prediction stage consists of computing the prior pdf of the state
at time k using the state space model while the correction step in-
volves updating the prior pdf by incorporating the measurement taken
at time k to obtain the posterior pdf at time k. The transition pdf,
π(xk|xk−1), and the likelihood function π(zk|xk) can be obtained
from the dynamic and measurement model respectively.
The conditional pdf of the state vector given by (5) and (6) are exact,
but it is impossible to find analytical closed form solution in most of
the cases. Hence we can use filtering schemes such as bootstrap or
sequential importance sampling (SIR) based on Monte Carlo meth-
ods to approximate the pdf by a random set of samples (particles).
The detailed description of these particle filtering algorithms can be
found in [3,4,5]. Here we provide the version of the SIR algorithm
that will be used in this paper.

Table 1: Sequential Importance Re-sampling Algorithm

1. Initialization k = 0
choose a sample of size N from the prior π(x0) and set
k = 1

2. Time update

xj
k|k−1 = fk(xj

k−1|k−1, u
j
k−1)

3. Weight update

wj
k =

hk(zk|xj
k|k−1)�N

m=1 hk(zk|xm
k|k−1)

4. Re-sampling

(a) Re-sample N particles xj
k|k from the predicted sam-

ple xj
k|k−1 according to the probability mass func-

tion of xj
k|k−1 given in step 3

(b) Set k ← k + 1 and go to step 2

3. DISTRIBUTED SCHEME FOR STATE ESTIMATES
FUSION AND APPLICATION TO SENSOR NETWORK

In this section, we consider the problem of estimating the position
of a dynamic object being observed by a network of sensor nodes
deployed randomly over the sensor field. We use geometric random
graph, as shown in diagram two, to model the sensor network in
which ri ∈ R

m, i = {1, ...n}, represents the spatial location of the
ith sensor node fixed up to time k. Each node in the network takes
noisy measurements of the distance between the node position and
the moving target location in the sensor field which can be modeled
by the following nonlinear stochastic vector signal:

xk+1 = fk(xk) + uk (7)

where xk ∈ R
m is the state vector of object position at time k and

fk : R
m → R

m is nonlinear function describing the evolution of
the states vector from time k to time k + 1. The process noise uk is
assumed to be uncorrelated in time and with the initial state x0.
The observational model of each node in the network can be de-
scribed as follows:

zi
k = hk(‖xk − ri‖γ) + vi

k , i = 1...n (8)
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where zi
k ∈ R is noisy distance measurement taken by ith node at

time k and hk : R → R is nonlinear function that relates the dy-
namic model with the observational model. The observational noise
vi

k (i = 1...n) is assumed to be spatially uncorrelated across sensors
and mutually uncorrelated with the process noise uk. The variance
of observational noise vi

k is proportional to the distance between the
node position and the object location xk. i.e
Var[vi

k] ∝ ‖xk − ri‖.
Each node first applies the particle filtering algorithm given in table
one to its own noisy observations in order to generate its state es-
timated signal, x̂i(k). Then each node improves its state estimated
signal by combining its state estimated signal with the state esti-
mated signals received from its neighboring nodes by using the fol-
lowing nonlinear dynamic fusion rule:

Γi(α + 1) = Γi(α) + ε[
�

j∈Ni

Fij(Γj(α) − Γi(α))

+
�

j∈Ni

Gij(Γj(α) − x̂i(k)) +
�

j∈Ni

Hij |(Γj(α) − x̂i(k))|1/p]

(9)

where Γi is the dynamic state of node i, Fij , Gij , and Hij are the
connection weights between node i and node j and for the purpose of
this paper these weights can be interpreted as the adjacency matrices
associated with the network , Ni is the number of nearest neighbors
of node i, ε is the updating rate, p is the parameter to be deter-
mined during simulation. The input to the dynamic fusion scheme is
the nonlinear state estimated signals generated by particle filtering at
each node and the output is the identical (approximately) improved
nonlinear state estimated signal at each node which will be closer
to the true nonlinear state signal than the nonlinear state estimated
signal generated by particle filtering .
The above mentioned dynamic fusion scheme is independent of any
particular communication topology and guarantee to provide each
node in the network with improved state estimated signal. As it only
demands local interaction among neighboring nodes of the network,
it is distributed in nature and all nodes improve their state estimated
signal without any central coordination and cooperation. However,
our approach significantly differs from [15], since we are interested
in reducing the error variance of the estimated signal such that the
estimated signal becomes closer to the true state signal as well as
in having identical (similar) improved state estimated signal at each
node. In order to achieve these two objectives, we introduce a new
nonlinear term (a correction term)in the fusion scheme (9) that will
play a crucial role in reducing the error variance of the state esti-
mated signal at each node and guarantee that each node in the net-
work will approximately have the identical improved state estimated
signal.

4. NUMERICAL SIMULATION

We model the state of an object moving in a 2-D sensor field by the
following nonlinear stochastic vector signal:

x1(k + 1) = cos(x1(k)x2(k)) + 2 sin(x2(k)) + u1(k)

x2(k + 1) = x2 sin(x1(k)) + cos(x1(k)) sin(x2(k)) + u2(k)
(10)

and the state signal is being observed by the network of nodes shown
in diagram two as follows:

zi(k) =
�

(x1(k) − ri
1)

2 + (x2(k) − ri
2)

2 + vi(k) (11)
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Fig. 2. Realization of randomly generated sensor network with n =
150 uniformly distributed sensor nodes

where ri
1 and ri

2 are the coordinates of a uniformly distributed po-
sition of the ith sensor node in the plane . We compare the per-
formance of improved state estimated signal generated by applying
the nonlinear distributed fusion scheme (9) proposed in the previous
section with the performance of state estimated signal generated by
applying the particle filtering algorithm given in table one at each
node for the following data:
vi(k) is the zero mean gaussian process with variance

Ri =
�

(x1(k) − ri
1)

2 + (x2(k) − ri
2)

2 , i = 1...150
u(k) is zero mean gaussian process with covariance matrix Q = 2I2

Initial condition for the state process, x(0) = [1.53, 0.67]T and state
estimate x̂i(0) = [1.5, 0.6]T and the initial set of particles (sample
of 500) is taken from N(x̂i(0), Q), ε = 0.01, k = 1...100.
We compute the error variance associated with the fused state esti-
mator x̂fi(k) generated by distributed fusion scheme (error var DF)
and the error variance associated with the state estimator x̂i(k) gen-
erated by particle filtering (error var PF) at each node by applying
an ensemble averaging procedure (average is taken over 100 realiza-
tions):

E‖xk − x̂i(k)‖2
≈

1

100

100�
r=1

‖xr(k) − x̂r
i (k)‖2

E‖xk − x̂fi(k)‖2
≈

1

100

100�
r=1

‖xr(k) − x̂r
fi

(k)‖2
(12)

The simulation is carried out for 50 nodes, 100 nodes, 150 nodes
and a set of values for parameter p = 1, p = 2, p = 3, p = 4, p =
5, and p = 10. We have found that the error variance of improved
state estimated signal, x̂fi(k), (generated by the proposed scheme)
has decreased considerably than the error variance of the state esti-
mated signal, x̂i(k), (generated by the particle filtering) in each case
provided p ≥ 3. The reason for p ≥ 3 indicates that possibly a
highly nonlinear correction term is desirable. The results for ran-
domly chosen nodes: node 17, node 44,node 60 and node 86 using a
network of 100 nodes are depicted in diagram three.

3427



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

error var PF 

error var DF 

Node 17 

error var PF error var DF 

Node 44 

Error variance of fused estimate vs Error variance of PF estimate

Error variance of fused estimate vs Error variance of PF estimate 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

error var PF error var DF 
Node 60 

error var PF 
error var DF 

Node 86 

Error variance of fused estimate vs Error variance of PF estimate 

Error variance of fused estimate vs Error variance of PF estimate 

Fig. 3. error variance curve of fused state estimated signal (dashed
line) and error variance curve of state estimated signal by PF (solid
line) for four set of nodes. DF stands for the distributed fusion and
PF for the particle filtering

5. CONCLUSIONS

We have studied the problem of estimating the nonlinear stochas-
tic signal and proposed a new distributed nonlinear dynamic rule
for the fusion of estimated signals at each node. We have achieved
our goal of minimizing the error variance of the state estimated sig-
nal at each node by using the proposed algorithm as demonstrated
through numerical simulation. The algorithm is scalable and robust
since adding /deleting of nodes or the failure of some nodes cannot
affect the performance of the algorithm. When the network is con-
nected and the step size, ε, is small enough, there is no problem with
the convergence. However, the questions relating to the theoretical
convergence, analytical optimality and stability of the algorithm re-
mains an open issue and in future work we will focus our attention
to address these issues.
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