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ABSTRACT

Cost-reference particle filtering (CRPF) allows for tracking of non-
linear dynamic states without a prior knowledge of the probability
distributions of the noises in the state-space representation of the
system. In this paper we consider a setup where the system un-
knowns consist of linear and nonlinear states. We propose an ef-
ficient scheme for estimation of the states by combining CRPF with
the recursive least square (RLS) algorithm. We applied the method
to the problem of target tracking using biased bearing measurements.
Simulation results show a very accurate performance of the proposed
approach.

Index Terms— RLS, particle filtering, parameter estimation,
target tracking, biased measurements

1. INTRODUCTION

Particle filtering (PF) is a sequential Monte Carlo method that
approximates the posterior distributions of interest by using discrete
random measures composed of particles and associated weights [1].
Based on Bayesian theory, PF proceeds in a recursive manner where
each iteration consists of three major steps: (I) particle propagation
(according to some importance function); (II) weight computation;
and (III) resampling when needed.

Recently, a new PF scheme was proposed in [2] to deal with
scenarios where the probabilistic information about the system is not
available. The method, referred to as cost-reference particle filtering
(CRPF) evaluates the “quality” of the particles according to some
selected criterion which does not use probabilistic assumptions,
unlike the weight computation in PF. The implementation of CRPF
is similar to that of auxiliary PF [3].

In many systems, some states are conditionally linear, and in
such cases one can exploit the property to improve the performance
of the applied filter. In the context of PF, one uses the concept
of Rao-Blackwellization [4], [5], which is implemented by use of
Kalman filters. In this paper we use similar ideas, but for CRPF.
We propose an efficient CRPF algorithm that is combined with the
RLS algorithm [6]. In a way similar to the marginalized particle
filters [7], only particles of the nonlinear states are generated, and
the conditionally linear states are estimated by RLS. In this paper
we assume that the conditionally linear states are constant with time.
In the PF literature, constant states are treated in one of several
ways. For example, one may use the kernel smoothing auxiliary
particle filters proposed by Liu and West in [1], or apply the density
assisted particle filters from [8]. We tested the proposed method in
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the problem of bearings-only tracking, where we assumed that the
measurements were affected by biases (additive or multiplicative)
and found that its performance is very good.

The paper is organized as follows. First, we formulate the
problem in Section 2. In Section 3, we present the proposed method.
Simulation results that demonstrate the validity of the method are
provided in Section 4. Finally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

We consider a dynamic system described by the following set of
equations

xt = f (xt−1) + L(xt−1)θ + ut (1)
yt = g(xt) + H(xt)θ + vt (2)

where, in (1), xt is a nonlinear system state at time t; f (·) is a
known transition function, which in general may be nonlinear; θ is a
conditionally linear constant state, and ut is a state noise vector with
zero mean. The measurements, yt, are modeled by (2), where g(·)
represents a known measurement function, and vt is a measurement
noise with zero mean. The symbols L and H are matrices whose
entries may be functions of the nonlinear states. The objective is to
estimate xt and θ, given the measurements, y1:t.

3. PROPOSED METHOD

In this section we first provide a brief review on CRPF and then we
detail the proposed method.

3.1. The CRPF algorithm

CRPF proceeds sequentially in a similar way as auxiliary PF by
updating the discrete random measure at time instant t − 1, ζt−1 ={

x
(m)
0:t−1, c

(m)
t−1

}M

m=1
, composed of particles x

(m)
0:t−1 and associated

costs c
(m)
t−1 upon the arrival of the next observation yt [2]:

1. Selection of streams: Compute the risks (costs predictions)
by

r
(m)
t = λc

(m)
t−1 + r(x

(m)
t−1|yt)

where λ is a forgetting factor and the second term in the
right-hand side of the formula measures the adequacy of the
particles at time t − 1 given the new measurement. Using
the risks, resampling is carried out according to a probability
mass function (pmf) defined by π̂

(m)
t ∼ μ(r

(m)
t ), where μ(·)
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is a monotonically decreasing function. As a result, a new
random measure is obtained

ζ̃t−1 =
{

x̃
(m)
0:t−1, c̃

(m)
t−1

}M

m=1
.

2. Propagation of particles:

x
(m)
t ∼ pt(xt|x̃(m)

t−1)

where pt(·) is a probability density function (pdf) chosen by
the designer.

3. Update of the costs:

c
(m)
t = λc̃

(m)
t−1 + �c

(m)
t

where�c(·) is an incremental cost, which can take different
forms. For example,�c

(m)
t = ||yt − ŷ

(m)
t ||q where ŷ

(m)
t is

an estimate of the observation based on the particle x
(m)
t and

q > 0 [2].
4. Estimation of the state: One possible estimate is:

x̂t =

M∑
m=1

π
(m)
t x

(m)
t

with π
(m)
t ∝ μ(c

(m)
t ). Other estimators have been discussed

in [9].

3.2. The RLS-CRPF algorithm

The conventional CRPF algorithm was designed for tracking dy-
namic states only, and therefore the corresponding state-space model
does not contain the second terms on the right-hand sides in (1)-(2).
Note that since the constant state θ is conditionally linear given xt,
we are able to compute the least square (LS) estimator sequentially
using the recursive LS (RLS) algorithm. Specifically, we interleave
the RLS and CRPF algorithms in such a way that we run the RLS al-
gorithm for each particle sequentially, and the obtained LS estimates
are then used for resampling, propagating the particles and comput-
ing the costs. The resulting algorithm proceeds as follows (note that
we denote the values of θ in the m−th stream at time instant t by
θ

(m)
t , which does not imply that θ is a time-varying state):
1. Selection of streams: The risks are computed according to

r
(m)
t = λc

(m)
t−1 + r(x

(m)
t−1|θ(m)

t−1, yt)

and resampling is performed to obtain the new random
measure

ζ̃t−1 =
{

x̃
(m)
0:t−1, c̃

(m)
t−1, θ̃

(m)

t−1, P̃
(m)
t−1

}M

m=1
.

2. Propagation of particles:

x
(m)
t ∼ pt(xt|x̃(m)

t−1, θ̃
(m)

t−1)

3. Prediction of θ (RLS):

Q̃xt−1 = Qxt−1 + L(x̃
(m)
t−1) P̃

(m)
t−1 L(x̃

(m)
t−1)

�

G
(m)
t−1 = P̃

(m)
t−1L(x̃

(m)
t−1)

�Q̃−1
xt−1

θ
(m)

t|t−1 = θ̃
(m)

t−1

+ G
(m)
t−1

(
x

(m)
t − f (x̃

(m)
t−1) − L(x̃

(m)
t−1)θ̃

(m)

t−1

)

P
(m)

t|t−1 =
(
I − G

(m)
t−1 L(x̃

(m)
t−1)

)
P̃

(m)
t−1

4. Update of the costs:

c
(m)
t = λc̃

(m)
t−1 + �c(x

(m)
t |θ(m)

t|t−1, yt)

5. Estimation of the state:

x̂t =

M∑
m=1

π
(m)
t x

(m)
t

6. Update of θ (RLS):

Q̃yt = Qyt + H(x
(m)
t )P

(m)

t|t−1 H(x
(m)
t )�

K
(m)
t = P

(m)

t|t−1H(x
(m)
t )�Q̃−1

yt

θ
(m)
t = θ

(m)

t|t−1

+ K
(m)
t

(
yt − g(x

(m)
t ) − H(x

(m)
t )θ

(m)

t|t−1

)

P
(m)
t =

(
I − K

(m)
t H(x

(m)
t )

)
P

(m)

t|t−1

7. Estimation of θ:

θ̂t =

M∑
m=1

π
(m)
t θ

(m)
t

Initialization of the algorithm includes the drawing of particles
from a prior distribution, i.e., x(m)

0 ∼ p0(x0), setting the costs to
zero, c(m)

0 = 0, the conditionally linear states to some initial value
θ̂0, P(m)

0 = α I, and the weighting matricesQxt , Qyt to matrices
chosen by the designer.

4. COMPUTER SIMULATIONS

In this section we apply the proposed method to the problem of target
tracking using bearings-only biased measurements.

4.1. The tracking model

The target moves according to the constant velocity motion model
[10], that is,

xt = Gxxt−1 + Guut (3)

where xt = [x1,t x2,t ẋ1,t ẋ2,t]
� ∈ R

4 is the system
state representing the positions and velocities of the target; Gx

and Gu are the state-transition and the noise-transition matrices,
respectively, given by:

Gx =

⎛
⎜⎝

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

⎞
⎟⎠ and Gu =

⎛
⎜⎜⎜⎝

T2
s
2

0

0
T2

s
2

Ts 0
0 Ts

⎞
⎟⎟⎟⎠

where Ts is the sampling period; and ut ∈ R
2 is the state noise,

which accounts for small acceleration perturbations.
Two static sensors are used to collect the bearing information of

the target. Figure 1 depicts the geometry of the problem. We define
the measurement function g(·) as [11]

g(xt) =

⎡
⎣arctan

(
x2,t−l2,1
x1,t−l1,1

)

arctan
(

x2,t−l2,2
x1,t−l1,2

)
⎤
⎦
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sensor 2

target

sensor 1

y2,t
y1,t

Fig. 1. A system with two static sensors and their bearings-only
measurements.

where (l1,1, l2,1) and (l1,2, l2,2) denote the positions of sensors 1
and 2. We consider two different cases according to the nature of
the biases: additive biases ba and multiplicative biases bm. The
observation vectors yt = [y1,t y2,t]

� for the two different cases
were given by

yt = g(xt) + ba + vt (4)

yt = Diag
(
g(xt)

)
bm + vt (5)

where vt ∈ R
2 is the observation noise and is assumed to

be independent from ut. Diag
(
g(xt)

)
is the diagonal matrix

with g(xt) as the vector of the diagonal entries. Assuming that
the measurements are sent to a fusion center, the objective is
to successfully track the trajectory of the target by applying the
proposed method.

4.2. Results

In addition to the proposed method (labeled as RLS-CRPF), we
also implemented, for comparison purposes, a standard CRPF with
complete knowledge of the biases (labeled as CRPF) and a standard
CRPF with the wrong assumption that there were no biases (labeled
as CRPFn).

In the experiment, we simulated a trajectory of T = 300s with
a sampling period of Ts = 1s. The target started from the origin
with zero initial velocity. The two static sensors were placed at
(l1,1, l2,1) = (−12000, 13000) and (l1,2, l2,2) = (10000, 15000),
respectively (the units are meters). In the case of additive biases,
we set ba = [0.58 − 0.96]�, and for the case of multiplicative
biases we considered bm = [1.02 0.99]�. The state noise ut

and the observation noise vt were modeled as mixture Gaussian
distributions

ut ∼ .3N (0, I2) + .5N (0, .25I2) + .2N (0, .01I2)

vt ∼ .5N (0, 10−2I2) + .4N (0, 10−4I2) + .1N (0, 10−5I2).

In the implementation of the filters, we usedM = 500 particles,
and we propagated the particles with a Gaussian density N (0, 4I2).
We chose λ = 0, q = 2, and μ(x) = 1/x. For the RLS algorithm,
we set b̂a0 = 0, b̂m0 = 1, and for both cases, α = 100, and
Qyt = I2.

Figure 2 shows the trajectories of the target and the obtained
estimates. It is clear that the proposed algorithm estimated the tra-
jectories quite accurately, while the CRPFn had a poor performance.
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Fig. 2. Trajectory of the target and the corresponding estimates.
Top: Results corresponding to additive biases. Bottom: Results
corresponding to multiplicative biases.

We also provide the estimates of the biases, which are displayed in
Figure 3. Again, the results show a good performance of the pro-
posed approach.

The mean square errors (MSEs) of the position of the target
are compared in Figure 4. The results there were obtained by
averaging J = 50 independent simulations. We clearly see that the
worst performance was achieved by CRPFn. The CRPF, which had
complete knowledge of the biases, achieved the best performance,
which constituted a lower bound for the alternative filters that
assumed presence of biases but no knowledge of their values. The
proposed method showed a performance much better than CRPFn
and close to the bound.

5. CONCLUSIONS

In this paper we extend the original cost-reference particle filtering
(CRPF) approach to the case of joint estimation of nonlinear dy-
namic states and conditionally linear constant states. The proposed
method combines the recursive least square algorithm to find esti-
mates of the linear states with the traditional CRPF algorithm which
deals with the nonlinear states. This allows the CRPF algorithm to
be more efficient in exploring the space of the nonlinear states. Al-
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Fig. 3. Estimates of the biases. Top: Results corresponding to
additive biases. Bottom: Results corresponding to multiplicative
biases.

though the proposed method focuses on the case that conditionally
linear states were constant with time, the method can be readily ex-
tended to deal with conditionally linear states that are time-varying.
Simulation results on the problem of bearings-only tracking in the
presence of biased measurements show very good performance of
the proposed method.
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