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ABSTRACT
We present a new unscented particle filter for dynamic sys-
tems that outperforms the general particle filter and the un-
scented particle filter when the variance of the observation
noise is small. Our algorithm uses a bank of unscented Kalman
filters to refine the prediction in particle filter. The key dif-
ference with the traditional unscented particle filter is the in-
troduction of an auxiliary model and a bank of unscented
Kalman filter with this auxiliary model to generate the impor-
tance distribution in the particle filter. This structure makes
efficient use of the latest observation information. Our new
algorithm use fewer particles than the general particle filters
and its performance outperforms them.

Index Terms— Monte Carlo methods, nonlinear filters,
Kalman filtering

1. INTRODUCTION

Consider a dynamic nonlinear discrete time system described
by a state-space model

xt = f(xt−1) + ut, (1)

yt = h(xt) + vt, (2)

where xt is the hidden state, yt is the observation, and ut, vt
are the state and observation noises. Both noises are indepen-
dent and identically distributed sequences and are mutually
independent. When we write (1), we always assume implic-
itly that ut is independent of {xt−k, k ≥ 1}. This condition
is natural when the process (xt) is generated from the model
in the increasing time order. Then, xt is an homogeneous
Markov chain, i.e., the conditional probability density of xt
given the past states x0:t−1 = (x0, . . . , xt−1) depends only
on xt−1 through the transition density p(xt|xt−1), and the
conditional probability density of yt given the states x0:t and
the past observations y1:t−1 depends only on xt through the
conditional likelihood p(yt|xt). We further assume that the
initial state x0 is distributed according to a density function
p(x0).

In a Bayesian framework, the posterior density of the state
given the past observations p(xt|y1:t), constitutes the solu-
tion to the inference problem and allows to calculate for in-
stance the conditional mean E(xt|y1:t) which is the best mean
squared estimate of the state. A recursive update of the poste-
rior density as new observations arrive is given by the recur-
sive Bayesian filter defined by

p(xt+1|y1:t) =
∫
p(xt+1|xt)p(xt|y1:t)dxt,

p(xt+1|y1:t+1) =
p(yt+1|xt+1)p(xt+1|y1:t)

p(yt+1|y1:t) ,

where the conditional density p(yt+1|y1:t) can be calculated
by p(yt+1|y1:t) =

∫
p(yt+1|xt+1)p(xt+1|y1:t)dxt+1.

The difficulty to implement the recursive Bayesian filter
is that the integrals are intractable, except for a linear Gaus-
sian system in which case the closed-form solution of the in-
tegral equations is the well known Kalman filter. Particle fil-
ters (PF) use simulation-based methods to calculate the multi-
dimensional integrals. The key idea of PF is to implement the
recursive Bayesian filter by Monte Carlo methods. However,
the performance of PF often varies largely and many efforts
have been done to improve it, see [1], [2], [3]. In this paper,
we present a new unscented particle filter (UPF) that outper-
forms the standard PF and the UPF when the variance of the
observation noise is small.

The remainder of this paper is organized as follows. We
briefly introduce the principle of the PF and the unscented
Kalman filter (UKF) before the presentation of our algorithm.
Then, the effectiveness of our method is illustrated on a typi-
cal model used in [3]. Finally, some conclusions are given.

2. BACKGROUND

The principle of PF is to implement the recursive Bayesian
filter by Monte Carlo simulations, [4]. The posterior density
p(xt|y1:t) is represented by a set of N random samples xi

t
(particles) drawn from p(xt|y1:t) with associated normalized
positive weights ωi

t (
∑

i ω
i
t = 1). The posterior density is

approximated by the discrete distribution
∑N

i=1 ω
i
tδ(xt−xi

t),
and the expectation of any integrable function g(·) of hidden
states is approximated by the sum,

E[g(xt)] =
∫
g(xt)p(xt|y1:t)dxt �

N∑
i=1

ωi
tg(x

i
t).

The density p(xt|y1:t) is a marginal of the full posterior
density p(x0:t|y1:t). In general, it is difficult to sample di-
rectly from the full posterior density. To overcome this diffi-
culty, we sample from an easy sampling proposal importance
distribution q(x0:t|y1:t). Defining the weights as

ωi
t =

p(xi
0:t|y1:t)

q(xi
0:t|y1:t)

,

ωi
t is updated by

ωi
t = ωi

t−1

p(yt|xi
t)p(x

i
t|xi

t−1)
q(xi

t|xi
t−1, yt)

. (3)

We can implement recursively a basic sequential importance
sampling particle (SIS) filter in the following steps [4] :
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1. Sample the particles xi
t ∼ q(xt|xi

t−1, yt);

2. Update the weights according to (3).

An important problem of PF is the degeneracy problem.
After a few iterations, only few particles have non negligi-
ble weights and the estimation may become unreliable. Sam-
pling importance resampling PF has been developed by [5] to
overcome this drawback. The objective of resampling is to
eliminate samples with low importance weights and multiply
samples with high importance weights. Several methods of
resampling have been developed, such as multinomial resam-
pling, residual resampling and systematic resampling. In this
paper, we use residual sampling, see [6] and [7].

2.1. The Importance Distribution

The choice of proposal importance distribution is one of the
critical issues in PF. The performance of PF heavily depends
on the proposal importance function. The optimal proposal
importance distribution is q(xt|x0:t−1, y1:t) = p(xt|xt−1, yk)
and fully exploits the information in both xt−1 and yt [7].
In practice, it is impossible to sample from this distribution
due to its complication. The second choice of proposal func-
tion is the transmission prior function q(xt|x0:t−1, y1:t) =
p(xt|xt−1) for its easiness to sample. This is the most popular
choice. But since this function does not use the latest infor-
mation yt, the performance depends heavily on the variance
of observation noise. When the observation noise variance is
small, the performance is poor, see [8], [9]. The third choice
is to use the method of local linearization to generate the pro-
posal importance distribution. Then, Rao Blackwellised PF
was developed by [6] and uses extended Kalman filter (EKF)
to generate the proposal distribution. UPF was introduced
by [3] and uses UKF to generate the proposal distribution.
In [10], EKF, UKF and Gaussian-Hermite filter were used to
generate the proposal distribution. Since all these filters use
the latest information yt, the choice of the method of local
linearization is better than the transmission prior function.

3. THE UNSCENTED KALMAN FILTER

The UKF was first developed by [11] in order to overcome the
drawbacks of EKF. Since EKF uses the method of lineariza-
tion to approach the true nonlinear systems, EKF performs
badly when the system is severely nonlinear. However, UKF
uses several so called sigma points to calculate the mean and
covariance of random variables, see [12]. These sigma points
propagate through the true nonlinear system. The posterior
estimation is calculated by the average of the sigma points.
UKF is essentially a kind of Quasi-Monte Carlo method, see
[13]. UKF uses the sigma points to compute the covariances
needed in Kalman filtering. The ability of processing nonlin-
earity is the advantage of UKF. The UKF is valid only when
the posterior distribution can be closely approximated by a
Gaussian distribution [8]. The drawbacks of UKF are

1. It preserves the linear update structure of the Kalman
filter which is optimal only in linear Gaussian systems.

2. It uses only second order moments which is valid only
for Gaussian distributions.

3. The number of sigma points is small and may not rep-
resent adequately complicated distributions.

UKF and UPF work well when the variance of the ob-
servation noise is small. This may be due to the fact that the
distribution of a random variable with a small variance (10−4)
can be approximated reasonably by a Gaussian distribution.

4. A NEW UNSCENTED PARTICLE FILTER

In the following, we refer to (1) and (2) as the main model.
We introduce now an auxiliary model and we use a bank of
UKF with this model to generate the importance distribution.

4.1. Auxiliary model

The auxiliary model is designed to represent a constant sig-
nal rt observed through zt and writes

rt = rt−1 +mt, (4)

zt = h(rt) + nt. (5)

The noise mt is Gaussian with a small variance, typically
10−5. The variances of the observation noises nt and vt in (2)
are supposed to be equal. If h(·) is linear and nt is a Gaussian
noise, the Kalman filter can be used to track the state rt. In
most applications, h(·) is nonlinear. Then, UKF can be used
to track rt and will work well if the variance of nt is small.

4.2. The algorithm

We develop a modified UPF (MUPF) which works well when
the variance of the observation noise is small. In this case,
the posterior distribution of the hidden state is highly peaked
and can be well approximated by a Gaussian distribution with
a small variance. In MUPF, at step t, we use the UKF in the
main model to generate the importance distribution from x1

t−1

to sample the first particle x1
t in the same way as in the UPF.

Then, we use x1
t and the auxiliary model using UKF to gener-

ate the importance distribution from which the second particle
x2

t is sampled. Iterating this process, we obtain recursively

x3
t , . . . , x

N
t , where N is the total number of particles used in

the PF, see Figure 1. Let N(x̄1
t , P

1
t ) be the Gaussian impor-

tance distribution of x1
t obtained by using UKF with the main

model. Because of the drawbacks of UKF,N(x̄1
t , P

1
t ) may be

a poor approximation of the true posterior distribution of xt.
MUPF can provide a better approximation. Indeed, when the
variance of observation noise is small, the observation yt is
highly informative and in a sense contains more information
than the prior transmission function. For this reason, only the
first particle x1

t is sampled directly from the prior p(xt|xt−1),
and the others particles are sampled from importance distri-
butions obtained from x1

t and the auxiliary model which is
designed to fully exploit the information of yt. In the auxil-
iary model, rt is an almost constant signal. We set r̄0 = x1

t ,
Pr0 = P 1

t and z1 = yt. Then we calculate the posterior distri-
bution N(r̄1, Pr1) of r1 using UKF with the auxiliary model,
we set N(x̄2

t , P
2
t ) = N(r̄1, Pr1) and we sample a particle

x2
t from the distribution N(x̄2

t , P
2
t ). We iterate this gener-

ating process by setting z2 = · · · = zN−1 = yt. Since rt
is an almost constant signal and the variance of nt is small,
the importance distributions N(x̄2

t , P
2
t ), . . . , N(x̄N

t , P
N
t ) are
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good approximations of the posterior distribution p(xt|y1:t).
MUPF

1. Initialization, t = 0:

• For i = 1, . . . , N ,draw particle xi
0 ∼ p(x0) and

set t = 1.

2. Importance sampling step:

• For i = 1, use UKF with the main
model to generate the importance distribution
N(x̄1

t , P
1
t ) from particle x1

t−1. Sample x1
t ∼

N(x̄1
t , P

1
t ) (Same procedure as UPF).

• For i = 2, 3, . . . N , use UKF with the auxiliary
model to generate the importance distribution

N(x̄i
t, P

i
t ) from particle xi−1

t . Sample xi
t ∼

N(x̄i
t, P

i
t ).

3. Importance weight step:

• For i = 1, . . . , N , evaluate the importance

weights ω̃i
t = p(yt|xi

t)p(xi
t|xi

t−1)

N(x̄i
t,P

i
t )

.

• For i = 1, . . . , N , normalise the importance

weight ωi
t = ω̃i

tPN
j=1 ω̃i

t

.

4. Resampling step:

• Resample N particles x̃i
1:t from the xi

1:t ac-
cording to the normalized importance weights.

• set ωi
t = 1

N

Figure 2 illustrates the advantage of MUPF with the non-
linear non Gaussian model considered in Section 5. We take
t = 21, the true value of xt is 5.0461. We generate 20 parti-
cles by PF, UPF and MUPF. It is clear that MUPF performs
better than PF and UPF, since except x1

t and x2
t , all the others

particles xi
t provide a good prediction of the true state xt. In

practice, only 5 particles are needed in MUPF to obtain a very
good performance.

5. NUMERICAL EXAMPLE

To illustrate the performance of MUPF, we consider a non-
linear non Gaussian model which was used in [3] and given
by

xt = 1 + sin(wπ(t− 1)) +
1
2
xt−1 + ut,

yt =
{

1
5x

2
t + vt, t ≤ 30,

1
2xt − 2 + vt, t > 30,

where w = 4e − 2, ut follows a Γ(3, 2) distribution, and vt

follows a N(0, 10−5) distribution. We compare PF, UPF and
MUPF to estimate the hidden states xt for t = 1, . . . , 60.

In Table 1, we present the corresponding root mean-squared
error (RMSE), using 200, 50, 20, and 5 particles, respectively,
in each algorithm. The experiment is repeated 100 times inde-
pendently, and Mean and Variance denote the estimated mean

Fig. 1. Schema of the different sampling methods.

Fig. 2. Sampling results from PF, UPF and MUPF at a fixed
time using 20 particles.
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Algorithm Mean Variance Time N
PF 0.4390 0.0598 1.89

UPF 0.0749 0.0089 11.25 200
MUPF 0.0048 3.43e-7 11.33

PF 0.6836 0.0320 1.94
UPF 0.1794 0.0098 2.91 50

MUPF 0.0049 3.77e-7 2.99

PF 0.7852 0.0261 0.86
UPF 0.3664 0.0096 1.17 20

MUPF 0.0050 3.48e-7 1.19

PF 1.0622 0.0187 0.83
UPF 0.5831 0.0086 0.86 5

MUPF 0.0109 0.0027 0.86

Table 1. RMSE of PF, UPF and MUPF.

and variance of RMSE, respectively, Time is the computing
time, and N is the number of particles used in each method.

In Figure 3, we show the result of the estimation of the
state xt obtained after resampling for t = 1, . . . , 60, using 20
particles in each algorithm. When t = 21,xt = 5.0461, and
the values of the 20 particles before resampling were shown
in Figure 2.

Fig. 3. The results of estimation using 20 particles.

The results show that MUPF needs a smaller number of
particles than PF and UPF to get accurate estimations of the
state. With 5 particles, MUPF outperforms PF and UPF using
200 particles. Finally, UPF and MUPF have the same com-
plexity of implementation.

6. CONCLUSION

We have proposed a new UPF. The idea is to add a bank of
UKF in the sampling step in the framework of general PF.
The main problem in PF is the choice of the importance dis-
tribution that greatly influence its performance. In general,
the particles generated from the transmission prior function
do not match an highly peaked likelihood function. UPF can
performs better by moving the particles to areas of high like-
lihood through one step prediction of UKF. However, due to
the drawbacks of UKF, the one step prediction of UKF may

be rough. By using a bank of UKF with an adequate auxiliary
model, we have proved that the precision of the prediction can
be improved. When the observation noise variance is small,
the performance of our new algorithm outperforms the PF and
UPF greatly with the same complexity as UPF.
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