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ABSTRACT
Bayesian estimation in nonlinear stochastic dynamical sys-

tems has been addressed for a long time. Among other so-

lutions, Particle Filtering (PF) algorithms propagate in time

a Monte Carlo (MC) approximation of the a posteriori filter-

ing measure. However, a drawback of the classical PF algo-

rithms is that the optimal conditional importance distribution

(CID) is often difficult (or even impossible) to compute and to

sample from. As a consequence, suboptimal sampling strate-

gies have been proposed in the literature. In this paper we

bypass this difficulty by rather considering the prediction se-

quential importance sampling (SIS) problem; the filtering MC

approximation is obtained as a byproduct. The advantage of

this prediction-PF method is that it combines optimality and

simplicity, since for the prediction problem, the optimal CID

happens to be the prior transition of the underlying Markov

Chain (MC), from which it is often simple to sample from.

Index Terms— Particle Filtering, Sequential Importance

Sampling, Optimal importance function, Hidden Markov

Chains.

1. INTRODUCTION

Let us consider the following classical stochastic dynamical

system : {
xn+1 = gn(xn,un)
yn = hn(xn,vn) , (1)

in which gn(., .) is some (possibly nonlinear) function from

IRm × IRp to IRm, hn(., .) is some (possibly nonlinear) func-

tion from IRm × IRq to IRq, and u = {un}n∈IN and v =
{vn}n∈IN are zero-mean sequences which are independent,

jointly independent and independent of x0.

Let p(xn|y0:n), say, denote the probability density func-

tion (pdf) of xn given y0:n = {yi}n
i=0 (other pdf or condi-

tional pdfs of interest are defined similarly). One can check

that the following properties hold :

p(xn+1|x0:n) = p(xn+1|xn) ; (2)

p(y0:n|x0:n) =
n∏

i=0

p(yi|x0:n) ; (3)

p(yi|x0:n) = p(yi|xi) for all i, 0 ≤ i ≤ n , (4)

so (1) is often refered to as a Hidden Markov Chain (HMC).

In this paper we deal with the Bayesian filtering problem,

which consists in recursively computing p(xn|y0:n) as new

observations become available. From (2)-(4) we get

p(x0:n|y0:n)=
p(xn|xn−1)p(yn|xn)

p(yn|y0:n−1)
p(x0:n−1|y0:n−1) (5)

Consequently, the recursive propagation of p(xn|y0:n) is

given by

p(xn|y0:n) =
p(yn|xn)

∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

p(yn|y0:n−1)
(6)

It remains to compute (6) in practice. In the linear Gaus-

sian case the solution can be computed exactly by the Kalman

filter. However, the exact recursive solution is difficult to

compute in general, and consequently many approximate

techniques have been developed. Among them, particle fil-

ters (see e.g. [1] [2] [3] [4] [5] [6] and references therein)

are MC methods which aim at propagating an approximation

of p(dxn|y0:n); such methods have found many applications

(see e.g. [4] [5]) and have proven to be very efficient in

practice.

However, a drawback of the classical PF algorithms is

that the optimal conditional importance distribution (CID),

from which one should sample particles from, is often dif-

ficult (or even impossible) to compute. In this paper we pro-

pose to compute the filtering measure indirectly, via the pre-

diction SIS problem. As we shall see, the advantage of this

prediction-PF method is that it combines both optimality and

simplicity, since for the prediction problem, the optimal CID

happens to be the prior transition of the MC x = {xn}, from

which it is often simple to sample from. Moreover computing

the incremental importance weight also becomes straightfor-

ward.

This paper is organized as follows. In section 2 we first

briefly recall the classical PF algorithms. Next in section 3

we introduce the prediction-PF algorithm. Simulations are

performed in section 4, and we end the paper with some con-

cluding remarks.
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2. THE CLASSICAL PF ALGORITHMS

2.1. The generic PF algorithm

Let us recall the principle of particle filtering [4] [5] [6]. As-

sume that at time n − 1 we have a discrete random measure

which approximates p(dx0:n−1|y0:n−1) :

p(dx0:n−1|y0:n−1) �
N∑

i=1

κi
n−1δxi

0:n−1
(dx0:n−1) , (7)

where δx is the Dirac measure at point x, the samples xi
0:n−1

are generated from an importance distribution q(x0:n−1|y0:n−1),
and the importance weight κi

n−1 associated to the i-th trajec-

tory xi
0:n−1 is given by

κi
n−1 ∝ p(xi

0:n−1|y0:n−1)
q(xi

0:n−1|y0:n−1)
,

N∑
i=1

κi
n−1 = 1. (8)

Let us see how to compute (7) recursively. We first consider

the updating of the trajectories. If we assume that the impor-

tance distribution factorizes as

q(x0:n|y0:n) = q(xn|x0:n−1,y0:n)q(x0:n−1|y0:n−1),

i.e. that q(x0:n|y0:n) admits q(x0:n−1|y0:n−1) as marginal,

then for all 1 ≤ i ≤ N , [xi
0:n] = [xi

0:n−1,x
i
n], in which each

particle xi
n is sampled from the CID q(xn|xi

0:n−1,y0:n). As

for the weights κi
n, we see from (5) that they can be computed

recursively as

κi
n ∝ p(xi

n|xi
n−1)p(yn|xi

n)
q(xi

n|xi
0:n−1,y0:n)︸ ︷︷ ︸
λi

n

× p(xi
0:n−1|y0:n−1)

q(xi
0:n−1|y0:n−1)︸ ︷︷ ︸
∝κi

n−1

. (9)

Finally
∑N

i=1 κi
nδxi

0:n
(dx0:n) approximates p(dx0:n|y0:n),

and thus
∑N

i=1 κi
nδxi

n
(dxn) approximates p(dxn|y0:n).

2.2. Practical considerations

Now, SIS algorithms are well known to suffer from weights

degeneracy. It has thus proved important in the above generic

algorithm to resample from
∑N

i=1 κi
nδxi

n
(dxn) (either sys-

tematically or according to some strategy), and also to choose

the CID q(xn|xi
0:n−1,y0:n) carefully.

To that respect, sampling from the a priori transition ker-

nel of the Markov chain x (i.e., choosing q(xn|xi
0:n−1,y0:n) =

p(xn|xi
0:n−1) = p(xn|xi

n−1), which was the original choice

in the so-called bootstrap filter [1]) is popular because sam-

pling from p(xn|xi
n−1) is often straightforward. Moreover,

computing the incremental weight λi
n in (9) reduces to evalu-

ating the conditional likelihood of the new observation given

the updated particle position.

However, this choice of the prior density can often lead

to poor performances, and indeed the best choice is to sample

the particles from the optimal CID qopt(xn|xi
0:n−1,y0:n) [7],

i.e. the distribution which minimizes the variance of the im-

portance weights κi
n, conditionally on the observations y0:n

and past samples xi
0:n−1. One can see easily that qopt is the a

posteriori transition kernel of x (which, conditionally on the

observations y, remains a Markov Chain) :

qopt(xn|xi
0:n−1,y0:n) = p(xn|xi

0:n−1,y0:n)

= p(xn|xi
n−1,y0:n)

= p(xn|xi
n−1,yn). (10)

For this choice of the CID, the incremental weight λi
n in (9)

becomes

λi
n = p(yn|xi

n−1). (11)

Now, sampling from (10) (or even computing this CID)

is impossible in most cases, and computing (11) is not easy

either. As a consequence many efforts have been expended in

order to approximate this distribution (see e.g. [7] [8] [9] [5]

[6] ). As we shall see in the next section, it is indeed possible

to bypass this difficulty and to re-design the PF algorithm in

such a way that the optimal becomes the prior.

3. THE PREDICTION-PF ALGORITHM

Equation (6) describes the transition p(xn−1|y0:n−1) →
p(xn|y0:n) as the succession of two steps. We first pre-

dict the future value xn, based on the same amount of

data (Markovian step p(xn−1|y0:n−1) → p(xn|y0:n−1) =∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1); and we next incor-

porate the new data yn (Bayesian step p(xn|y0:n−1) →
p(xn|y0:n) ∝ p(yn|xn) p(xn|y0:n−1)). However, it is well

known in Kalman filtering that these steps are interchange-

able. Let us thus see what happens in PF if we begin with the

prediction problem, i.e. if we interchange the prediction and

filtering steps.

3.1. The generic Prediction-PF algorithm

Similarly to section 2.1, particle prediction can be set as fol-

lows. From model (1) we get

p(x0:n+1|y0:n) =
p(xn+1|xn)p(yn|xn)

p(yn|y0:n−1)
p(x0:n|y0:n−1),

(12)

which should be compared to (5). Let us thus start from

p(dx0:n|y0:n−1) �
N∑

i=1

wi
nδxi

0:n
(dx0:n) , (13)

in which samples xi
0:n are generated from q(x0:n|y0:n−1),

and the prediction importance weights wi
n now satisfy

wi
n ∝ p(xi

0:n|y0:n−1)/q(xi
0:n|y0:n−1).

3414



The importance function should be chosen such that

q(x0:n+1|y0:n) = q(xn+1|x0:n,y0:n)q(x0:n|y0:n−1).

As for the updating of the importance weights, (9) becomes

wi
n+1 ∝ p(xi

n+1|xi
n)p(yn|xi

n)
q(xi

n+1|xi
0:n,y0:n)︸ ︷︷ ︸

λi
n

× p(xi
0:n|y0:n−1)

q(xi
0:n|y0:n−1)︸ ︷︷ ︸
∝wi

n

. (14)

Finally
∑N

i=1w
i
n+1δxi

0:n+1
(dx0:n+1) approximates p(dx0:n+1|y0:n),

and thus p(dxn+1|y0:n) � ∑N
i=1 wi

n+1δxi
n+1

(dxn+1), but

also p(dxn|y0:n) � ∑N
i=1 wi

n+1δxi
n
(dxn).

3.2. Optimal importance function

Similarly to section 2.2, one should also choose the CID

q(xn+1|x0:n,y0:n) properly. It is easy to show the following

result.

Proposition 1 For the one-step ahead prediction problem,
the posterior importance function :

q(xn+1|xi
0:n,y0:n) = p(xn+1|xi

0:n,y0:n) (15)

= p(xn+1|xi
n) (16)

is the CID which minimizes the variance of weight wi
n+1 con-

ditionally upon xi
0:n and y0:n. Under this choice of the im-

portance function, the incremental weight λi
n in (14) becomes

λi
n = p(yn|xi

n). (17)

The main interest of the above algorithm is that in the pre-
diction problem, the optimal importance function coincides
with the prior transition pdf of the Markov chain x, from

which it is often easy to sample from. Computing the in-

cremental weight via (17) is also much easier than via (11),

since p(yn|xn) is indeed nothing but the HMC elementary

observational transition in (4). Stated otherwise, we cumulate

the advantages of choosing both the prior (for practical is-

sues) and the posterior (for optimality results) CIDs, since in

the prediction problem both transitions coincide. Let us now

summarize the above discussion in the following algorithm.

The Prediction-Particle Filter.

Let p(dxn|y0:n−1) �
∑N

i=1 wi
nδxi

n
(dxn).

Prediction.

• For i = 1, · · · , N , sample xi
n+1 ∼ p(xn+1|xi

n);

• For i = 1, · · · , N , compute wi
n+1 ∝ p(yn|xi

n) × wi
n,∑N

i=1 wi
n+1 = 1;

• Resample (if necessary) from
∑N

i=1 wi
n+1δxi

n+1
(dxn+1);

• Then p(dxn+1|y0:n) � ∑N
i=1 wi

n+1δxi
n+1

(dxn+1).

Filtering.

• For i = 1, · · · , N , set κi
n = wi

n+1;

• Then p(dxn|y0:n) � ∑N
i=1 κi

nδxi
n
(dxn).

4. SIMULATIONS

In this section we perform computer simulations in order to

validate our Prediction-PF algorithm. We consider the scalar

model

xn+1 = 0.5xn + 25xn/(1 + x2
n) (18)

+ 8 cos(1.2(n + 1)) + un,

yn = x2
n/20 + vn. (19)

We set x0 ∼ N (0, 1), un ∼ N (0, 10) and vn ∼ N (0, 1).
In this experiment we take N = 500 particles, and we re-

sample whenever Neff
def
= 1PN

i=1(w
i
n)2

< σ with σ = 0.3N .

The plots are averaged over P = 50 realizations. Figs. 1

and 2 respectively display the tracking of the true state by the

Prediction-PF algorithm and the empirical variance. As ex-

pected, in this model the Prediction-PF algorithm tracks the

state quite well.

We finally compute the empirical standard deviation JN

defined as

JN =
1
M

M∑
n=1

(
1
P

P∑
j=1

(x̂n|n(j) − xn(j))2)1/2, (20)

in which j denotes the realization and n is the running time

index with 0 ≤ n ≤ M and M = 50. The estimate x̂n|n(j) is

computed as
∑N

i=1 κi
nxi

n(j). Table 1 displays JN as a func-

tion of the number of particles N .

N JN

100 5.17

250 4.57

500 4.55

700 4.16

Table 1. Empirical standard deviation as a function of the

number of particles.

5. CONCLUSION

In this paper we proposed the prediction-PF algorithm as a

new SIS solution to the non linear Bayesian filtering prob-

lem. Instead of directly propagating in time a discrete ran-

dom approximation of the filtering measure p(dxn|y0:n),
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we propagate MC approximations of the prediction measure

p(dxn|y0:n−1); an MC approximation of p(dxn|y0:n) is ob-

tained as a byproduct of this recursion. The main advantage

of this (apparently indirect) solution is that for the prediction

SIS problem, the optimal CID coincides with the elemen-

tary a priori transition kernel of the Markov chain x from

which it is often simple to sample from. Also, computing the

associated incremental importance weight becomes straight-

forward. The Prediction-PF algorithm is thus a very simple

alternative to PF algorithms with suboptimal CID. Finally

simulations confirmed the good tracking results expected by

the method.
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