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ABSTRACT

Multipath is one of the dominant sources of error in high-

precision GNSS applications. A tracking algorithm is pre-

sented that explicitely accounts for direct signal and multipath

replicas in the model, in order to mitigate the contributions of

the latter. A Bayesian approach has been taken, to infer some

information from the time evolution model of the parameters.

Due to the nonlinearity of the measurement model, a Particle

Filtering algorithm has been designed. The proposed PF con-

siders Rao–Blackwellization with a CKF and the selection of

the importance density is performed via the use of Laplace’s

method, which yields to an importance density close the opti-

mal. Simulations compare performance to EKF and PCRB.

Index Terms— Monte Carlo methods, Satellite naviga-

tion systems, Tracking, Multipath channels.

1. INTRODUCTION

Global Navigation Satellite Systems (GNSS) is the general

concept used to identify those systems that allow user po-

sitioning based on a constellation of satellites. All of them

are based on the same principle: the user computes its posi-

tion based on the distances between its receiver and a set of

in-view satellites. These distances are calculated by estimat-

ing the propagation time that transmitted signals take from

each satellite to the receiver [1]. Each satellite is uniquely

identified by its own direct-sequence spread-spectrum (DS-

SS) signal, which are transmitted synchronously by all satel-

lites. GNSS receivers are mainly interested in estimating de-

lays of signals received directly from the satellites, hereafter

referred to as line-of-sight-signals (LOSSs), since they are

the ones that carry information of direct propagation time.
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Hence, reflections distort the received signal in a way that

may cause a bias in delay and carrier-phase estimations [2].

Thus, multipath is probably the dominant source of error in

high-precision applications. In the GPS C/A code this ef-

fect can introduce a bias up to a hundred of meters when em-

ploying a 1-chip wide Delay Locked Loop to track the delay,

which is a common synch method used in DS-SS receivers.

In this paper, we present a Particle Filtering algorithm for

tracking synchronization parameters in a GNSS receiver in

the presence of multipath. Actually, it tracks both the LOSS

and multipath replicas of a given satellite signal, virtually

eliminating the multipath contribution. The details of the Par-

ticle Filter are exposed in section 3. Two important variations

have been introduced w.r.t. [3]. Firstly, it considers a vari-

ance reduction technique, known as Rao–Blackwellization,

that marginalizes linear parameters using a Complex Kalman

Filter (CKF). Secondly, an approximation of the optimal im-

portance density is considered via the use of Laplace’s method.

Simulation results are shown, comparing the performance of

the presented PF with the Extended Kalman Filter (EKF) and

the Posterior Cramér-Rao Bound (PCRB).

2. SYSTEM MODEL

Consider a detailed signal model that accounts for both the

LOSS and the multipath signals where Doppler–shifts are not

taken into account, assuming that a Frequency Locked Loop

or a Phase Locked Loop is able to track and remove this fre-

quency deviation. The received complex baseband DS–SS

signal of a given satellite affected by M −1 multipath signals

is modeled as

x(t) =
M−1∑
m=0

αm(t)q(t − τm(t))ejφm(t) + n(t) (1)

where αm(t), τm(t) and φm(t) stand for the amplitude, de-

lay and carrier phase of the m–th received signal, respectively.

These parameters are time–varying processes, which has been

explicitely expressed with the time dependence. n(t) is Ad-

ditive White Gaussian Noise (AWGN) with variance σ2
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tice that the subscript m = 0 stands for the LOSS parameters.

The contribution of the rest of satellites can be neglected con-

sidering that GNSS systems use pseudorandom noise (PRN)

codes with a high processing gain (∼ 43 dB). Thus, the influ-

ence of other satellites can be considered as Gaussian noise

and included in the thermal noise term since those signals are

below the noise floor. Due to physical reasons, it is consid-

ered that τm(t) > τ0(t),∀m = {1, . . . , M − 1}, in outdoor

environments. q(t) is the DS–SS signal of the tracked satel-

lite, composed of the sequence of data symbols, {d(l)}, and

its PRN sequence {c(n)} which spreads to a rate function of

the chip period, Tc. Data symbols are transmitted at a lower

bit rate, Tb. Being g(t) the chip-shaping pulse, we define

q(t) =
∞∑

l=−∞
d(l)p(t − lTb) and

p(t) =
P−1∑
n=0

c(n)g(t − nTc) (2)

where p(t) is the spreading waveform and P = Tb/Tc is

the length of the PRN sequence used. Notice that, since the

PRN sequence and the chip-shaping pulse are known at the

receiver, q(t) can be considered also known as the data–bit

d(l) will not vary within the observation time, which is typi-

cally much shorter than the bit period.

Defining

α(t) = [α0(t), . . . , αM−1(t)]
T ∈ R

M×1

φ(t) = [φ0(t), . . . , φM−1(t)]
T ∈ R

M×1

τ (t) = [τ0(t), . . . , τM−1(t)]
T ∈ R

M×1

q(t, τ (t)) = [q(t − τ0(t)), . . . , q(t − τM−1(t))]
T ∈ C

M×1

Φ(t) = diag{ejφ(t)} ∈ C
M×M , (3)

it is straightforward to obtain the vector version of (1) as

x(t) = qT (t, τ (t))Φ(t)α(t) + n(t). (4)

Considering the Software Defined Radio (SDR) philoso-

phy [4], a GNSS receiver records K snapshots which are to

be processed. Thus, at time instant k, the K–samples version

of model in equation (4) is expressed as,

xk = QT
k (τ k)Φkαk + nk (5)

where matrix Qk(τ k) = [q(k − K + 1, τ k), . . . ,q(k, τ k)] ∈
C

M×K is known as the basis-function matrix and contains K
samples from the delayed narrowband envelopes of each M
signals. The vectors containing the composite signal and the

zero–mean AWGN are expressed as xk,nk ∈ C
K×1, respec-

tively. Σn = σ2
nI is the covariance matrix of the noise.

Notice that the unknown parameters are time-varying processes,

as explicitly expressed by subscript k. However, we assume

that they are piecewise constant during the observation in-

terval of K samples. This time evolution is modeled by a

Markovian prior for each parameter which is a first-order au-

toregressive model:

αk ∼ p (αk|αk−1) = N (Fk,ααk−1,Σk,α)
φk ∼ p

(
φk|φk−1

)
= N (

Fk,φφk−1,Σk,φ

)
τ k ∼ p (τ k|τ k−1) = N (Fk,ττ k−1,Σk,τ ) (6)

being Fk,α,Fk,φ and Fk,τ the respective transitional matri-

ces, that controls the speed of change of the corresponding

parameter. Σk,α,Σk,φ and Σk,τ denote the covariance matri-

ces of the evolving parameters.

3. A PARTICLE FILTERING TRACKING
ALGORITHM FOR MULTIPATH MITIGATION

The discrete state-space approach is adopted to deal with the

non-linear Bayesian filtering problem, this is to recursively

compute estimates of states zk � [αT
k , φT

k , τT
k ]T ∈ R

3M×1

given measurements xk ∈ C
K×1 at time index k. State equa-

tion models the evolution of target states as a discrete–time

stochastic model, from (6):

zk ∼ p (zk|zk−1) = N (Fkzk−1,Σk,z) (7)

where we have defined Fk = diag{Fk,α,Fk,φ,Fk,τ} and

Σk,z = diag{Σk,α,Σk,φ,Σk,τ}. Equation (5) models the

relation between measurements and states. The objective is

to estimate recursively the posterior pdf of the states given all

available measurements at time k, x1:k = {x1, . . .xk}:

p(z0:k|x1:k) =
p(xk|zk)p(zk|zk−1)

p(xk|x1:k−1)
p(z0:k−1|x1:k−1) (8)

in particular, the filtering problem considers the marginal dis-

tribution p(zk|x1:k), which can be computed in a recursive

way. However, in general this recursion cannot be solved an-

alytically. There are few cases where the posterior pdf can

be characterized by a sufficient statistic, e.g. linear-Gaussian

models where the Kalman Filter (KF) yields the optimal solu-

tion. Unfortunately, this is not the case in the problem under

study since measurements depend non-linearly on states.

Particle Filters (PF) are a set of Sequential Monte–Carlo

(SMC) based algorithms used to compute the Bayesian recur-

sion in general state-space models. SMC methods are simulation-

based techniques that obtain a characterization of the poste-

rior pdf in a sequential manner [5, 6]. PF methods rely on

the Sequential Importance Sampling (SIS) concept to charac-

terize this density. Basically, it involves the approximation

of the posterior by a set of Ns random samples taken from

an importance density function, zi
k ∼ π(zk|zi

k−1,x1:k), with

associated importance weights wi
k. In general,

zi
k ∼ π(zk|zi

k−1,xk)

wi
k ∝ wi

k−1

p(xk|zi
k)p(zi

k|zi
k−1)

π(zi
k|zi

k−1,x1:k)
(9)
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For a set of generated particles,
{
zi

k, wi
k

}Ns

i=1
, the charac-

terization of the marginal posterior pdf is given by

p̂(zk|x1:k) =
Ns∑
i=1

wi
kδ(zk − zi

k) (10)

being δ(.) the Dirac’s delta function. This approximation con-

verges a.s. to the true posterior as Ns → ∞ if the support of

the chosen importance density includes the support of the pos-

terior. Resampling, consisting in replacing particles with low

importance weights and multiply those with high importance

weights, is performed after state estimation. In particular, we

have considered a systematic resampling procedure [6].

In our PF setup, we consider a marginalization proce-

dure. If we partition the state-space into two sub-spaces, cor-

responding to its linear and nonlinear parts denoted as zl
k and

znl
k respectively, the measurement model can be rearranged as

xk = Hk

(
znl

k

)
zl

k + nk, conditional upon nonlinear states.

Then, by the chain rule of probability, we can express the

posterior pdf as

p(zk|x1:k) = p(zl
k|znl

k ,x1:k)p(znl
k |x1:k) (11)

and, taking into consideration that zl
k generates a linear Gaussian

state-space, p(zl
k|znl

k ,x1:k) can be updated analytically via a

KF conditional on znl
k and only the nonlinear part of zk needs

to be estimated via a PF. This procedure is referred to as Rao–

Blackwellization and constitutes a variance reduction tech-

nique that aims at improving PF efficiency [7].

In our application, reorganizing the model presented in

equation (5), we have that zl
k � ak = Φkαk and znl

k � τ k,

being Hk � Hk

(
znl

k

)
= QT

k (τ k). Notice that, since ak ∈
C

M×1, we have to implemented a Complex Kalman Filter

(CKF) [8] for the conditional linear part of the model.

3.1. Selection of Importance Density: Laplace’s method

As said, one of the key points is the choice of a good impor-

tance density function π(·). This is to propose an importance

density function close to the optimal, which is the posterior

pdf, in the sense that it minimizes the variance of importance

weights. However, it is only possible to draw samples from

this distribution in limited cases and other alternatives must be

explored [6, 7]. The simplest approach is to consider the tran-

sitional prior as the importance function, but this was shown

to be inefficient as it requires a large number of samples to

effectively characterize the posterior [3].

In this paper, an approximation of the optimal density,

π(τ k|τ k−1,xk) ≈ p(τ k|τ k−1,xk) ∝ p(xk|τ k)p(τ k|τ k−1)
is obtained via a Laplacian approximation of the likelihood

function, as proposed in [9]. Laplace’s method yields analyti-

cal Gaussian approximations of densities from a Taylor series

expansion at the mode of the density, being H−1 the inverse

Hessian of the logarithm of the density used as a covariance

approximation [10].

Thus, we aim at obtaining the parameters that character-

ize p(xk|τ k) ≈ N (τ̄ k, Σ̂k), i.e., the mode τ̄ k and the in-

verse Hessian evaluated at the mode Σ̂k = H−1
∣∣
τ̄ k

. Manip-

ulating (5), it is straightforward that the maximization of the

log-likelihood is equivalent to minimizing the following cost

function w.r.t. τ k:

Λk (τ k) = xH
k (I − Πk)xk =

∣∣∣∣∣∣Π⊥
k xk

∣∣∣∣∣∣2 (12)

being Πk (τ k) � Hk(HH
k Hk)−1HH

k the projection matrix

onto the subspace spanned by Hk and Π⊥
k (τ k) its orthogo-

nal complement. A regularization term is introduced in order

to constrain the search space to be in the neighborhood Σr of

the propagated prior estimate μr = Fk,τ τ̂ k−1 to avoid diver-

gence, mimicking [9]. Thus, the optimization problem

τ̄ k = arg min
τ k

{Λk (τ k) + r (μr,Σr)} = arg min
τ k

{Jk}
r (μr,Σr) = (τ k − μr)

T Σ−1
r (τ k − μr) (13)

can be solved via the Newton-Raphson recursive algorithm:

τ̄n+1
k = τ̄n

k − λn H−1
τ (Jk)

∣∣
τ̄ n

k
∇τ (Jk)|τ̄ n

k
(14)

where index n denotes the iteration and λn is the step-size,

implemented with backtracking. The expressions for the Gra-

dient and the Hessian of Jk (τ k) can be obtained as, respec-

tively,

∇τ (Jk) = −xH
k ∇τ (Πk (τ k))xk + Σ−1

r (τ k − μr)
Hτ (Jk) = −xH

k Hτ (Πk (τ k))xk + Σ−1
r (15)

where

∇τ (Πk) = Π⊥
k ∇τ (Hk)H†

k +
(
Π⊥

k ∇τ (Hk)H†
k

)H

Hτ (Πk) = ∇τ (Π⊥
k )∇τ (Hk)H†

k + Π⊥
k Hτ (Hk)H†

k

+ Π⊥
k ∇τ (Hk)∇τ (H†

k) +
(
∇τ (Π⊥

k )∇τ (Hk)H†
k

+ Π⊥
k Hτ (Hk)H†

k + Π⊥
k ∇τ (Hk)∇τ (H†

k)
)H

H†
k = (HH

k Hk)−1HH
k (16)

Once the likelihood has been approximated, we incorpo-

rate the information of each propagated particle to form the

Gaussian importance density:

π(τ k|τ i
k−1,xk) = N (μπ,Σπ) (17)

where

μπ = Σπ

(
Σ̂−1

k τ̄ k + Σ−1
k,zFk,ττ i

k−1

)

Σπ =
(
Σ̂−1

k + Σ−1
k,z

)−1

(18)

After the posterior characterization, we can easily obtain

the MMSE estimate of states at instant k, τ̂ k ≈ ∑Ns

i=1 wi
kτ i

k.
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Fig. 1. RMSE of LOSS delay estimation in chips and the

corresponding pseudorange estimate. RMSE averaged over

100 Monte Carlo runs.

4. SIMULATION RESULTS

In order to assess the performance of the proposed tracking

algorithm, signal coming from GPS constellation has been

simulated. A scenario composed of a LOSS and a multipath

replica is considered (M = 2), considering that C/A code is

to be tracked. A carrier-to-noise density ratio of 45 dB-Hz for

the LOSS, a signal-to-multipath ratio of 6 dB and the LOSS

and multipath to be in–phase, the worst possible case [2], have

been considered. The received signal is filtered with a 2 MHz

bandwidth filter, a sampling frequency of fs = 5.714 MHz is

considered and K corresponds to 1 ms of data recorded each

second. Chip period is Tc = 1/ (1.023 MHz) in GPS C/A

code. Figure 1 shows the RMSE performance (averaged over

100 Monte-Carlo simulations) of the proposed PF algorithm

when considering different numbers of particles. In addition,

the results have been compared to the solution obtained via an

EKF and the minimum theoretical achievable variance, which

is given by the PCRB in the filtering problem [6]. The left-

hand axis shows the RMSE normalized to Tc and the right

axis corresponds to the resulting pseudorange estimation error

in meters, which is propagated in the computation of user’s

position. The covariance matrices involved in the simulations

are Σ
1
2
k,τ = Σ

1
2
r = diag{Tc, 2Tc}, the receiver dynamics cor-

respond to a vehicle with a constant velocity of 22 m/s and

the multipath relative delay is one chip w.r.t. the time-varying

τ0(t).

5. CONCLUSIONS

A PF algorithm has been proposed that mitigates multipath

effect on GNSS estimates, being one of the dominant sources

of error in high-precision applications. The seminal idea was

introduced in [3], where the batch processing of data has been

studied. In the present paper, there are several improvements

to be taken into account. First, the tracking of time-varying

parameters has been addressed. Secondly, it considers a vari-

ance reduction technique, known as Rao–Blackwellization,

that estimates the linear/Gaussian part of the state-space, i.e.,

complex amplitudes, via a Complex Kalman Filter. Finally,

the selection of an efficient importance density is performed

using a Laplacian approximation of the likelihood pdf. Com-

puter simulation results showed that the performance of the

proposed PF improves the results of a conventional EKF and

that it gets closer to the PCRB as Ns increases.
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