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ABSTRACT

Robust parameter estimation in impulsive noise has risen a
lot of attention in wireless communications. Previously, we
proposed a non-parametric estimator for multiuser detection
based on non-parametric density estimation. Here, we present
a semi-parametric estimator that outperforms its non-parametric
counterpart by combating multiple access interference and
impulsive noise altogether. The approach is termed semi-
parametric since a nonlinear parametric function is used to
transform the noise data while non-parametric estimation of
the score function is performed using the transformed sam-
ple. This estimate is then used to determine the parameters
of interest, i.e., the transmitted symbols. We also propose a
parametric function and an estimator for its parameter.

Index Terms— Robust Estimation, Multiuser Detection,
Impulsive noise

1. INTRODUCTION

Generally, impulsive noise is due to different electromagnetic
interference sources and mainly occurs in urban areas and in-
door communication channels [1]. A speci c problem that
we consider here is Multiuser Detection (MUD) in i.i.d. im-
pulsive noise. Conventional estimators for MUD fail in such
noise environments since they are optimal only under a spe-
ci c assumption (e.g. Gaussianity for the least-squares esti-
mator) [2].
Approaches based on M-estimation that cope with deviations
from model assumptions have been suggested in the litera-
ture. In particular, in [3] a minimax solution over a class of
different distributions was suggested. This solution may be
suboptimal for a particular model. Even though this approach
improves performance over conventional MUD techniques in
impulsive noise [2], adapting the estimator to the underlying
noise pdf is desirable. In this view, in [4] the focus was set
on a parametric approach where a model selection scheme for
modeling the noise pdf was suggested. Another approach [5]
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is based on a non-parametric estimate of the pdf, using adap-
tive kernel density estimation (AKDE). One limitation of this
approach is the necessary selection of local bandwidths to t
the tails of the distribution. An inaccurate choice of local
bandwidths leads to poor estimates of the noise pdf and con-
sequently to poor estimates of the parameters of interest.
Here, a new estimator is presented that combines the advan-
tages of parametric and non-parametric approaches to improve
small sample performance. This approach uses a paramet-
ric, nonlinear function to transform the noise data in a con-
venient way, so that the problem of local bandwidth selection
is overcome. Kernel density estimation (KDE) of the trans-
formed data can then be performed using a global bandwidth
only. An estimate of the noise density is provided via back-
transformation and used to estimate the parameters of inter-
est.
In Section 2, the signal and noise model are introduced and
the concepts of robust estimation are presented. Section 3 de-
scribes the novel method whereas Section 4 addresses asymp-
totic behaviour of the adaptive approaches. Simulation results
of different detectors in different noise scenarios are given in
Section 5. Section 6 concludes the paper.

2. PROBLEM STATEMENT

2.1. Signal Model

We consider the uplink channel of a CDMA system whereK
users transmit at the same time. The received signal is

yi =

K∑
k=1

SikAkbk + ni i = 1, · · · , N, (1)

where Sik denotes the normalised chip i of user k, Ak is the
amplitude and bk is the transmitted Binary Phase Shift Keying
(BPSK) symbol of user k and θ = Ab is to be estimated.
Note that the length of the spreading code equalsN and ni is
i.i.d. zero-mean noise with pdf f(x). If f(x) is known, the
maximum likelihood estimate (MLE) is de ned by

θ̂ML = arg min
θ

N∑
i=1

− log f

(
yi −

K∑
k=1

Sikθk

)
. (2)
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A unique solution of (2) can be obtained by solving its rst-
order derivative for zero. This corresponds to solving the fol-
lowing equation system:

N∑
i=1

S(ik)ϕ

(
yi −

K∑
k′=1

S(ik′)θk′

)
= 0, k = 1, · · · , K,

(3)
where ϕ(x) = −f ′(x)/f(x) is the location score function.
The amplitude and symbol of each user are recovered as Âk =
|θ̂k| and b̂k = sign(θ̂k). If f(x) is Gaussian, ϕ(x) is linear
and (3) corresponds to least-squares estimation.

2.2. Robust Estimation and Impulsive Noise Model

When the data deviates from the Gaussian assumption, the
least-squares estimator is suboptimal. Huber proposed a min-
imax solution where ϕ(x) in (3) is replaced by an in uence
function ψ(x) that limits the effect of outlying values [3] and
consequently confers robustness on the parameter estimate.
In his work the following ε-contaminated Gaussian mixture
model

f(x) = (1− ε)fG(x, 0, ν2) + εH, (4)

was considered where fG(x, 0, ν2) is a zero-mean Gaussian
pdf with variance ν2 and H is an unknown symmetric pdf.
The minimax estimator, that minimises the maximum asymp-
totic variance for the least favourable distributionH, was ap-
plied to MUD in [2]. It was shown that signi cant improve-
ments over conventional estimators can be achieved when the
data deviates from the Gaussian assumption. However, this
M-estimator, like any minimax estimator, may be far from
optimal away from the least favourable distribution. For this
reason, adaptive approaches are required which use the resid-
uals n̂ = y−Sθ̂ to estimate the score function of the underly-
ing noise pdf. A newmethod based on transformation density
estimation is presented hereafter.
In [1] an impulsive noise model for wireless communication
channels was suggested. Since this model is mathematically
intractable, the Gaussian mixture model has been used as a
common approximation [2] and is considered here. In this
model, H of (4) is a zero-mean Gaussian pdf with variance
κν2 which results in a symmetric, heavy-tailed and unimodal
pdf. Typical values for ε and κ are between 0.01 ≤ ε ≤ 0.1
and 10 ≤ κ ≤ 100.

3. SEMI-PARAMETRIC ESTIMATOR

One approach to obtain adaptivity for unknown noise distribu-
tions is to estimate the pdf and its derivative non-parametrical-
ly. The estimated score function is then

ϕ̂(x) = −f̂ ′(x)/f̂ (x). (5)

However, methods such as conventional KDE fail for heavy-
tailed data since they produce spurious peaks in the tails. This

problem can be partly overcome by selecting local bandwidths
for different samples [6], as in [5]. However, inaccuracies
in estimating the local bandwidths may still degrade perfor-
mance and result in non-monotonicities in the tails of the
pdf. This would lead to undesired oscillations in the estimated
score function and consequently to convergence problems in
the parameter estimation algorithm. In particular local band-
width selection often fails for small sample sizes and heavy
tailed data. To circumvent this problem we consider a semi-
parametric approach based on transformation density estima-
tion [7].

3.1. Algorithm

First an estimate of θ is obtained by a consistent estimator,
e.g., least-squares, and the residuals are calculated. Consider
the parametric transformation function w = g(x, γ) given by

g(x, γ) =

{
x : |x| ≤ γ
sign(x) · [ln(|x| − (γ − 1)) + γ] : |x| > γ.

(6)
When applying this transformation to the residuals, data points
in the tails of the distribution or outliers, which are sepa-
rated widely in the X-domain, come closer together in the
W-domain. This simpli es the estimation in the W-domain
for non-parametric KDE without local bandwidth selection.
Since g(x, γ) is linear in a certain region around zero, the core
data remains untransformed. The estimated pdf f̂(x) and its
derivative f̂ ′(x) in the X-domain are obtained using the back
transformation x = g−1(w, γ) and an estimate of the score
function is calculated. Then an iteration step of a Newton-
Raphson algorithm suggested in [3] is performed to obtain
the next estimate θ̂i+1. This is repeated until convergence is
reached (see Table for details). Note that g(x, γ) is chosen
heuristically and other nonlinear functions may be used for
this algorithm. Notice that this algorithm does not require
training sequences.�

�

�

�

1. Initialisation
Set i=0. Obtain an initial estimate θ̂0

2. Determine the residuals
n̂ = y − Sθ̂

i

3. Determine γ, transform data via g(x, γ),
estimate f(x) and f ′(x) and estimate
the score function ϕ̂(x) = −f̂ ′(x)/f̂(x)

4. Update the parameter estimates
θ̂i+1 = θ̂i + μ(STS)−1STϕ̂(n̂)
where μ = 1/(1.25max(|ϕ̂′(n̂)|))

5. Check for convergence
If | θ̂

i+1
−θ̂i

θ̂i+1
| < ε, stop, where ε ∈ R

is a small number.
otherwise i→ i + 1 and go to step 2
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3.2. Transformation Density Estimation

Transformations in density estimation have been suggested
in [7] to estimate skewed and heavy-tailed data. Here, the
approach has been modi ed and adapted to symmetric noise
data which is a common assumption in communications. The
smooth pdf obtained in the W-domain is estimated with less
dif culty and its estimate is then back-transformedby a mono-
tonic function. This nonlinear function ensures that the pdf in
the X-domain inherits the smoothness property of its image
in the W-domain. Kernel estimates of the density f(x) and its
derivative are given by

f̂(x) =
1

Nh

N∑
i=1

H

(
g(x, γ)− wi

h

)(∣∣∣∣∂g−1(w, γ)

∂w

∣∣∣∣
)−1

(7)

f̂ ′(x) = −
1

Nh

N∑
i=1

(
g(x, γ)− wi

h2

)
H

(
g(x, γ)− wi

h

)

·
∂g(x, γ)

∂x

(∣∣∣∣∂g−1(w, γ)

∂w

∣∣∣∣
)−1

, (8)

where wi = g(n̂i, γ) and H(x) is the standard Gaussian pdf.
Several estimators for selecting the global bandwidth h are
available in the literature [6]. Here, we use ĥ = 1.06σ̂N−1/5

where σ̂ is a robust estimate of scale. This bandwidth esti-
mate is obtained instantly and provides satisfying results here
(note that our goal is to estimate θ and not f(x)).
In order to satisfy the symmetry constraint we use a sym-
metrised version f̂s(x) = (f̂(x) + f̂(−x))/2 instead of f̂(x)
that improves small sample performance.
Furthermore, the unimodality property of f(x) is incorpo-
rated into the estimator in order to reduce the error. In case
the estimate f̂(x) contains multiple modes, the global band-
width is thus increased by a factor η iteratively until a uni-
modal density is obtained [6]. For the most impulsive noise
scenario, i.e. ε = 0.1 and κ = 100, ve iterations on average
over 1000 repetitions for the semi-parametric and six for the
non-parametric approach were enough to achieve a unimodal
density using η = 1.05, as suggested in [5]. Hence, computa-
tional complexity is slightly decreased in this respect.

3.3. Choice of the Transformation Parameter γ

Values of the residuals smaller than γ remain untransformed
and may be easily estimated using a global bandwidth. Hence
γ has to be chosen such that outliers are transformed nonlin-
early to approach the core of the data in the W-domain. For
this reason it is important to detect outliers in the data set
for determining γ. Here we use an outlier detection method
suggested in [8] that normalises the residuals using robust es-
timates of location and scale. Any value greater than a cer-
tain threshold is considered to be an outlier. The standardised
residuals are given by

zi =
n̂i −median(n̂)

mad(n̂)
, (9)

where mad(·) is the median absolute deviation. Here the
threshold is set arbitrarily to 3, meaning that each value n̂i

for |zi| > 3 is de ned as an outlier. After the outliers are de-
tected the absolute values of the data are ordered. Parameter
γ is set to the absolute value of the largest order statistic |n[l]|
not belonging to the set of outliers, i.e., |n[1]| < .. < |n[l]| =
γ < |n[Outlier]| < .. < max(|n̂|). This choice ensures that
only outliers and a small amount of data in the tails are trans-
formed closer to the core. If no outliers are detected γ is set
to γ = 3mad(n̂).

4. ASYMPTOTIC BEHAVIOUR

In order to gain insight into the asymptotic behaviour of the
proposed estimator, we study an estimate of the asymptotic
variance given by

ÂV (f, ϕ̂) =

∫
∞

−∞
ϕ̂(x)2f(x)dx(∫

∞

−∞
ϕ̂′(x)f(x)dx

)2

,
(10)

where ϕ̂(x) is estimated for a noise sample ofN = 31 points.
The relative ef ciency (RE) is used as a metric to compare the
estimators to theMLE. It is de ned as the ratio of the Cramér-
Rao-Bound, i.e., the asymptotic variance of the MLE, where
ϕ̂(x) in (10) is replaced by ϕ(x) and the estimated asymp-
totic variance (10). We consider the Gaussian mixture noise
model given in Section 2.2 and compare the non-parametric
estimator given by (5) using AKDE and the semi-parametric
estimator given in Section 3.1. The REs of both estimators
are given in Figures 1 and 2.
A possible explanation for the opposite slopes of the two sur-
faces is that for the non-parametric estimator, local bandwidth
selection fails in highly impulsive noise environments, caus-
ing oscillations in the score function. This yields to lower
ef ciency of the estimator. The transformation function used
for the semi-parametric approach stabilises the shape of the
estimated score function, which increases ef ciency for high
ε and κ. For non-kurtotic pdfs, nonlinearity may distort the
data, thus leading to a small performance loss with respect to
the estimator based on AKDE.
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Fig. 1. RE of the non-
parametric estimator
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Fig. 2. RE of the semi-
parametric estimator
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5. SIMULATIONS

The linear decorrelating detector, the soft-limiter, the non-
parametric estimator [5] and the semi-parametric estimator
are applied to the CDMA scenario given in Section 2. Simu-
lations are performed over 105 Monte Carlo runs in different
noise environments with a near-to-far ratio (NFR) of 10dB.
K = 6 users with Gold sequences of length N = 31 are
used, meaning density estimation is performed with 31 sam-
ple points. The scale for bandwidth selection is estimated
using σ̂ = 1.483mad(n̂) and the clipping point c of the soft-
limiter is chosen to be c = 1.5σ̂, as in [2].
The Bit-Error-Rate (BER) of user 1 versus the Signal-to-Noise-
Ratio (SNR) in Gaussian noise is shown in Figure 3. We ob-
serve that the linear detector and soft-limiter perform slightly
better than the adaptive approaches. At high SNR the perfor-
mance gap is about 1.5 dB. However, when the impulsiveness
of the noise density increases, i.e., either ε or κ increase, the
linear detector suffers a signi cant performance loss whereas
the robust detectors are able to cope with these noise environ-
ments, as illustrated in Figure 4. Here, one can see that the
adaptive approaches perform signi cantly better in impulsive
noise environments than the static M-estimator, whereas the
linear detector breaks down. The semi-parametric approach
outperforms its non-parametric counterpart by at most 3dB.
Similar results were obtained for different ε and κ.
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Fig. 3. BER versus SNR for user 1 in a synchronous CDMA
channel with Gaussian noise. N=31, K=6, NFR=10dB

6. CONCLUSION

In this paper, a semi-parametric estimator based on trans-
formation density estimation was presented. It was found
that in impulsive noise environments the proposed estima-
tor achieves higher relative ef ciency than the non-parametric
one, which is based on AKDE. For the semi-parametric ap-
proach, an estimator for the parameter of the nonlinear trans-
formation function, based on outlier detection, was proposed.
Robust MUD was considered and simulation results showed
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Fig. 4. BER versus SNR for user 1 in a synchronous CDMA
channel with Gaussian mixture noise (ε = 0.1, κ = 100).
N=31, K=6, NFR =10dB.

that the new method strongly outperforms conventional de-
tectors in impulsive noise. No difference in performance be-
tween the adaptive approaches can be observed in Gaussian
noise.
An extension of the semi-parametric approach with differ-
ent parametric transformation functions, e.g., the Box-Cox
transformation, and selection schemes for their parameters
are considered for future work.
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