
INTERVAL LEAST-SQUARES FILTERING WITH APPLICATIONS TO ROBUST VIDEO
TARGET TRACKING

Baohua Li†, Changchun Li†, Jennie Si†, and Glen P. Abousleman‡

† Arizona State University, Tempe, AZ 85287
‡ General Dynamics C4 Systems, Scottsdale, AZ 85257

ABSTRACT

An interval recursive least-squares (RLS) filter is developed to
produce state estimation and prediction by narrow intervals,
in which true values are contained with high confidence. The
interval filter is robust to variations of the filter parameters
and state observations. Using this filter, a video target track-
ing algorithm is proposed to estimate the target position in
each frame. The tracking algorithm is robust to both noise in
the video sequence and estimation error of the affine model.
The experiments show that the tracking algorithm using the
interval RLS filter outperforms that using an RLS filter.

Index Terms— Robust filter, interval estimation, recur-
sive least-squares, video target tracking

1. INTRODUCTION

Kalman filtering [1] and recursive least-squares (RLS) filter-
ing [2] are efficient algorithms to estimate and predict states
in discrete-time linear dynamic systems. They have wide ap-
plications such as radar and image tracking, airplane navi-
gation, and chemical process control. However, using both
methods, state estimation and prediction are sensitive to fil-
ter parameters and state observations. Even if those param-
eters and/or observations have small errors, estimation and
prediction could be far from true values. In reality, it is chal-
lenging to obtain accurate parameters and observations due
to noise, modeling error, or measurement limitation. Specifi-
cally, for tracking video targets using an RLS filter [5], when
video quality is degraded by noise, the estimation errors of the
affine model parameters are nontrivial. Therefore, the target
position estimation may deviate from true values in the cur-
rent frame, the predicted search region can drift away from
the target in the next frame, and the transformed target tem-
plate may be different from the target appearance in the cur-
rent frame. Thus, their accumulative effects can cause a loss
of target lock. To address the issues of sensitivity and uncer-
tainty, parameters and observations are allowed to vary within
given ranges, resulting the development of robust methods.
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For instance, with interval filter parameters and state obser-
vations, an interval Kalman filter [3] produces robust interval
state estimation and prediction. However, in applications such
as tracking video targets, state noise stream and observation
noise stream can be temporally dependent or cross-correlated.
The interval Kalman filter may not preform well in this case.
It also degenerates when noise covariances are impossible to
estimate in real time.
In this paper, an efficient RLS filter using interval arith-

metics [4] is developed to give narrow interval state estima-
tion and prediction containing true values with high confi-
dence, where filter parameters and observations are assumed
to vary in closed intervals. This interval RLS filter is robust to
variations of parameters and observations. It does not require
noise covariances, and with convoluted noise dependency, the
performance may greatly exceed that of interval Kalman fil-
tering [2]. A video target tracking algorithm is then proposed,
which uses the interval RLS filter to estimate the target posi-
tion. It is robust to the error of the affine model. The perfor-
mance is evaluated by tracking a rigid and deformable target
in the respective two real-world video sequences.

2. INTERVAL RLS FILTERING

Anm×n interval matrix is denoted byM I = [M I(i, j)]m×n

orM I = [M, M ]m×n, whereM I(i, j) represents an interval
element at the ith row and the jth column, M, M ∈ �m×n

represent the lower and upper limits, respectively. A linear
time-varying system with interval parameter matrices and ob-
servations is formulated as follows:

Xk+1 = AI
kXk + ξk, (k = 0, 1, 2, ..., ) (1)

Y I
k+1 = BI

k+1Xk+1 + ηk+1. (2)

In the state equation (1), Xk, ξk, AI
k and Xk+1 represent an

n× 1 state, state noise, and n × n interval dynamic matrix at
time k, n× 1 state at time k + 1, respectively. In the observa-
tion equation (2), Y I

k+1, ηk+1 and BI
k+1 represent an m × 1

interval observation and observation noise,m×n interval ob-
servation matrix at time k + 1, respectively.
Since the associative law does not hold for interval ma-

trices, new rules for multiplication of three and four interval
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matrices are regulated to narrow results as follows:
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Let Ω = {Z1Z2Z
′

1 : Z1 ∈ ZI
1 , Z2(Positive semidefinite) ∈
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1 , ZI
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where at i = j,

ZI(i, j) =

m∑
n=1

(ZI
1 (i, n))2ZI

2 (n, n) (5)

+ 2
∑
k>n

ZI
1 (i, n)ZI

1 (i, k)ZI
2 (n, k),

and at i �= j,

ZI(i, j) =
m∑

n=1

ZI
1 (i, n)ZI

1 (j, n)ZI
2 (n, n) + (6)

∑
k>n

(ZI
1 (i, n)ZI

1 (j, k) + ZI
1 (i, k)ZI

1 (j, n))ZI
2 (n, k).

The square of an interval used in (5) is defined by vI = [v, v],

(vI)2 =

⎧⎨
⎩

[v2, v2] v ≥ v ≥ 0
[v2, v2] v ≤ v ≤ 0
[0, max{v2, v2}] v < 0 < v

.

In interval arithmetics, sub-distributivity law holds, i.e., for
intervals vI

1 , vI
2 , vI

3 ,(vI
1 + vI

2)vI
3 ⊆ vI

1vI
3 + vI

2vI
3 . Thus, the

interval expression inside the second sum of (6) is better. In

fact, Ω ⊆ F3(Z
I
1 , ZI

2 ) =
2⋂

i=1

Fi(Z
I
1 , ZI

2 ). Since all possible

matrices, Z1Z2Z
′

1, in Ω are positive semidefinite,

F4(Z
I
1 , ZI

2 ) = (F3(Z
I
1 , ZI

2 ) ∩ W I)
⋂

(F3(Z
I
1 , ZI

2 ) ∩ W I)
′

,

(7)
where

W I(i, j) =

{
[0, +∞] i = j

F3(Z
I
1 , ZI

2 )(i, j) i �= j
.

F4(Z
I
1 , ZI

2 ) still includes all Z1Z2Z
′

1, and it is narrower than
any other Fi(Z

I
1 , ZI

2 ).
Denote an identity matrix by I and a forgetting factor by

λ. Using (3), (4), (7), positive definite properties of some ma-
trices, and intersection of multiple different interval matrix
expressions extended from the essentially same matrix for-
mulations, interval filter is given below to obtain narrow state
estimation at time k + 1,XI

k+1/k+1
, and one-step-ahead pre-

diction at time k + 2, XI
k+2/k+1

, which is extended from the
RLS filter [2].
Initialization:

XI
0/0, P

I
0 = αI(α > 0), λ. (8)

Recursion:

UBAP
k+1 = [(λI + F4(B

I
k+1A

I
k, P I

k ))−1 ∩ WBAP
k+1 ] (9)⋂

[(λI + F4(B
I
k+1A

I
k, P I

k ))−1 ∩ WBAP
k+1 ]

′

,

where

WBAP
k+1 (i, j) =

{
[ε, +∞] i = j
(λI + F4(B

I
k+1A

I
k, P I

k ))−1(i, j) i �= j
,

and ε ≈ 0 and ε > 0,

LI
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k · (I − ULBA
k+1 ) · P I

k · (AI
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(14)⋂
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I
k, (I − ULBA
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P I
k+1 = (UP

k+1 ∩ WP
k+1) ∩ (UP
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k+1)

′

, (15)

where
WP

k+1(i, j) =

{
[ε, +∞] i = j
UP

k+1(i, j) i �= j

XI
k+1/k+1 (16)

= AI
k(XI

k/k + LI
k+1(Y

I
k+1 − BI

k+1 · A
I
k · XI

k/k))⋂
{(I − UALB

k+1 ) · AI
k · XI

k/k

+ [(AI
k · LI

k+1 · Y
I
k+1) ∩ UAL

k+1y
I
k+1)]},

XI
k+2/k+1 = AI

k+1X
I
k+1/k+1. (17)

Calibration: If widths of some interval elements inXI
k+1/k+1

are greater than a threshold vector, T , then

XI
k+1/k+1 = CI

k+1, P
I
k+1 = P0. (18)

Remark 1.
(i) The above interval RLS filter includes solutions of the
RLS filter to all possible realizations to the uncertain system.
(ii) CI

k+1
is assumed to be much narrower than XI

k+1/k+1
in

(16), and be near to or cover the true state with high confi-
dence. Since the interval estimation in (16) and prediction in
(17) may be too wide to provide satisfactory information, the
calibration step (18) is added to reinitialize the iterative pro-
cess, narrow the results, and inhibit divergence. Calibration
is necessary only when some interval elements of XI

k+1/k+1

in (16) become too wide because the narrow and accurate in-
terval,CI

k+1
, usually requires more prior information or other

time-consuming methods. (iii) State prediction based on the
calibrated interval estimation is also narrowed.
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3. VIDEO TARGET TRACKING ALGORITHM

A three-step iterative algorithm for tracking video target using
interval RLS filtering is proposed in the section. Let 〈vI〉 =
v+v
2
representing the center of an interval vI . In order to de-

scribe a transform from a homogeneous Cartesian coordinate
z1 = [ x y 1 ]

′

at the kth frame to another coordinate
z2 = [ x̃ ỹ 1 ]

′

at the (k + 1)th frame, an affine model is
defined by

(z1 − z2) =

⎡
⎣ a1(k) a2(k) a0(k)

a4(k) a5(k) a3(k)
0 0 1

⎤
⎦ z1

where parameters a0(k) and a3(k) reflect the camera transla-
tion, and a1(k), a2(k), a4(k), a5(k) are for scaling and rota-
tion. A target in the initial frame (k = 0) is selected with a
bounding box denoted as Bt(0). The tracking algorithm starts
from this initial frame.
The first step is to obtain the affine model. The param-

eters, ai(k), are estimated by the fast geometric constraint
global motion (fast GCGM) estimation [5] with levels from
coarsest to finest. The result is denoted as a1

i (k), and a small
perturbation δ1

i is added. Starting from a1
i (k) + δ1

i , the fast
GCGM estimation is implemented at the finest level to ob-
tain another estimation, a2

i (k). L-time estimates are gener-
ated based on the last one with an added small perturbation.
Then, an interval estimation, aI

i (k), is formed for each pa-
rameter, ai(k), by taking the minimum and maximum values.
The second step is to search the target. An uncertain state

equation is established with

Xk = [ x(k) vx(k) y(k) vy(k) 1 ]
′

(19)

AI
k=

⎡
⎢⎢⎢⎢⎣

1+aI
1(k) 1+aI

1(k) aI
2(k) aI

2(k) aI
0(k)

0 1+aI
1(k) 0 aI

5(k) 0
aI
4(k) aI

4(k) 1+aI
5(k) 1+aI

5(k) aI
3(k)

0 aI
4(k) 0 1+aI

5(k) 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(20)
wherex(k), y(k) represent the target position, and vx(k), vy(k)
represent the velocities in x and y coordinates, respectively.
In the initial frame, the center of the bounding box is used as
an estimate of the target position. Using the state estimation,
XI

k/k, at the kth frame, the region where the target is most
likely to appear is predicted at the (k + 1)th frame using the
interval RLS filter by [xI

k+1/k yI
k+1/k]

′

= AI
k(1, 3‖1 : 5)XI

k ,

where AI
k(1, 3‖1 : 5) represent a sub-matrix of AI

k that con-
tains the first and third rows and the first to fifth columns.
The target is searched in the rectangular region, Rk+1 =
{(x, y):x ∈ xI

k+1/k, y ∈ yI
k+1/k}, by adaptive templatematch-

ing [5]. The accumulative affine transformation matrix used
in adaptive template matching becomes an interval matrix as
follows:

ΦI
1=

[
aI
1(0) aI

0(0)
aI
4(0) aI

5(0)

]
, ΦI

k+1=

[
aI
1(k) aI

2(k)
aI
4(k) aI

5(k)

]
ΦI

k.

End points of four elements in each ΦI
k+1

construct 16 accu-
mulative affine transformation matrices. Based on those ma-
trices, adaptive template matching is implemented to yield 16
search results. Let xI

s(k + 1) and yI
s(k + 1) be the intervals

formed by taking the minimum and maximum values in the
respective x-axis and y-axis.
The third step is to estimate the state Xk+1 and the target

position. The estimationXI
k+1/k+1

is computed by the inter-
val RLS filter in the (k + 1)th frame with (19), (20), and the
following matrices:

BI
k+1=

[
1 0 0 0 0
0 0 1 0 0

]
, Y I

k+1=[xI
s(k+1) yI

s(k+1)]
′

.

The position (〈XI
k+1/k+1

(1, 1)〉, 〈XI
k+1/k+1

(3, 1)〉) is output
as the estimate of the target position. It is represented in the
frame by a bounding box denoted as Bt(k+1)with the center
as that point and the same size as the initial box Bt(0). The
above three steps proceed iteratively.
Remark 2.
(i) Since perturbations can help fast GCGM estimation to exit
wrong solutions or local minima, aI

i is most likely to be near
to or cover the true value. (ii) This algorithm is extended in
each step by intervals from that using the RLS filter. The
search region using the interval RLS filter is adaptive in size
to variations of the affine model, unlike that using an RLS
filter [5] with fixed size. As a result, the algorithm is robust to
the error of the affine models, and outperforms that using the
RLS filter.

4. EXPERIMENTAL RESULTS

Two real-world video sequences were used to evaluate the
performance of both the interval RLS filter and the new track-
ing algorithm. The tracking result is compared with the algo-
rithm using an RLS filter [5]. The videos used in the experi-
ments are gray-scale with a size of 240 × 320 pixels in each
frame. One sequence is a natural driving scene with a car,
where the target is the car indicated by the blue bounding box
in (b) of Fig. 1 as an example of rigid targets. The other is
a scene of two people walking with occlusion by tree, where
the target is one person indicated by the blue bounding box in
(b) of Fig. 2 as an example of deformable targets.
The parameters used in the proposed tracking algorithm

are given as follow. The times estimating the affine model L
is set to be 3. The perturbation is 5% of al

i(k)(l < L). At
the inital frame, velocities vx(0), vy(0) are estimated by the
interval [−5, 5](pixels/frame). When tracking a car (person),
in calibration process, the threshold is 20 (10) pixels for the
width ofXI

k+1/k+1
(1, 1) along the x-axis, and 15 (20) pixels

for the width of XI
k+1/k+1

(3, 1) along y-axis, and CI
k+1

=

[〈xI
s(k + 1)〉 [−5, 5] 〈yI

s(k + 1)〉 [−5, 5] 1]
′

. The thresholds
are comparable half the size of the initial bounding box along
each axis. The center, (〈xI

s(k + 1)〉, 〈yI
s(k + 1)〉), is used to
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calibrate the target position estimation, since it is most likely
to be near to the true target position. The target is assumed to
move relatively slowly. The interval [−5, 5](pixels/frame) is
selected as the velocity estimate.
The results for tracking the car (person) are shown in Fig.

1 (Fig. 2). In (a) and (b) of both figures, the estimated tar-
get position and search region are represented by the blue
bounding box Bt(k) and green rectangular shadow, respec-
tively. Using an RLS filter, the car (person) was lost in the
36th(71th) frame while using an interval RLS filter it was
tracked in that frame. The tracking performance for the video
sequence is evaluated by an overlap rate defined as r(k) =
S(Bt(k) ∩ Bg(k))/S(Bg(k)), where S(·) , Bg(k), Bt(k) ∩
Bg(k) represent an area, a bounding box which is drawn to
accurately cover the target as a ground truth, and the overlap-
ping region of both bounding boxes. Seeing (c), the overlap
rate using RLS filtering is lower than 20%(40%) or even close
to zero starting from about the 36th(60th) frame, which indi-
cates the target was lost. The overlap rate using inteval RLS
filtering is above 50%(80%) and close to 100% in most of the
frames, which indicates the target was always tracked.
Search regions are important for good tracking perfor-

mance. Too large or too small regions easily cause loss of
target lock. RLS filtering generates a fixed-size region which
is as large as 200 pixels in the experiments. However, interval
RLS filtering generates a region adaptive in size to variations
of the affine model. When tracking a car, the sizes shown in
(d) of Fig. 1 oscillate between around 100 pixel and 400 pix-
els. When tracking a person shown in (d) of Fig. 2, the sizes
typically fluctuate around 150 pixels.
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Fig. 1: Performance of tracking a car using an RLS and in-
terval RLS filter: (a) Tracking result at the 36th frame using
an RLS filter; (b) Tracking result at the 36th using an inter-
val RLS filter; (c) Overlap rate vs. frame number; (d) Size of
search region from an interval RLS filter.
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Fig. 2: Performance of tracking a person using an RLS and
interval RLS filter: (a) Tracking result at the 71th frame using
an RLS filter; (b) Tracking result at the 71th using an interval
RLS filter; (c) Overlap rate vs. frame number; (d) Size of
search region from an interval RLS filter.

5. CONCLUSION

We developed an interval RLS filter and an associated video
target tracking algorithm. The overall system is robust to
noise, parameter error and observation error. The experimen-
tal results show that the proposed tracking algorithm using the
developed interval RLS filter significantly outperforms track-
ing with the standard RLS filter.
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