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ABSTRACT

The generalized Cauchy distribution (GCD) family has

the property that its pdf has closed form for the whole family

and also has algebraic tails which makes it suitable to model

many impulsive processes in real life. In this paper we pro-

pose a robust M-type estimator based on the pdf of the GCD

family. Robustness and properties of the new statistics are

analyzed and it is noticed that this estimator provide desired

characteristics in robust signal processing applications involv-

ing non-Gaussian heavy-tailed models. Simulations of the

filtering method are performed to evaluate and compare the

proposed filtering structure performance to other classic and

robust estimators.

Index Terms— maximum likelihood estimation, nonlin-

ear filters

1. INTRODUCTION

Robust statistics is the stability theory of statistical proce-

dures. It systematically investigates the effects of deviations

from modelling assumptions on unknown procedures and, if

necessary, develops new, better procedures. Robust nonlin-

ear estimators are critical for applications in real situations

involving impulsive processes (e.g. ocean acoustic noise, at-

mospheric interference in LF and VLF communications and

multiple access interference in wireless system communica-

tions), where heavy-tailed non-Gaussian distributions model

the signal [1].

M-estimators, which were developed in the theory of ro-

bust statistics [2], have been of great importance in the de-

velopment of robust signal processing techniques [3]. M-

estimators can be described by a cost function ρ(u) (posing an

optimization problem) or by its first derivative, ψ(u) (yield-

ing an (set of) implicit equation(s)), which is proportional to

the influence function. In the location case properties of ψ
describe how robust the estimator is. Maximum likelihood

location estimates form a special case of M-estimators, with

the observations being independent and identically distributed

and ρ(u) = − log f(u), where f(u) is the common density

of the samples.

The α-Stable density family has gained recent popular-

ity in addressing heavytailed problems. Unfortunately, the
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Cauchy distribution is the only algebraictailed α-Stable dis-

tribution that possesses a closed form expression, limiting the

flexibility and performance of methods derived from this fam-

ily of distributions. In this paper the maximum likelihood

(ML) estimate of location is derived for the GCD family and

then extending the associated norm as an M-type estimator.

The fact that M–GC estimator is likelihood–based guarantees

that the estimate is, at least asymptotically, unbiased consis-

tent and efficient in GCD statistics [2]. Robustness and prop-

erties of the cost function are analyzed and it is noticed that

this estimator provide desired characteristics in robust signal

processing applications involving non-Gaussian heavy-tailed

processes.

2. M–ESTIMATION AND GCD

The generalized Cauchy distribution family was proposed by

Miller and Thomas in 1972 and has been used in several stud-

ies of impulsive radio noise [1]. The PDF of the GCD is given

by

f(x) = aσ(σp + |x|p)−2/p

with a = pΓ(2/p)/2(Γ(1/p))2. In this representation, σ is

the scale parameter and p is the tail constant. The GCD family

contains the Meridian [4] and Cauchy distributions as special

cases with p = 1 and p = 2 respectively. For p < 2, the

tail of the PDF decays slower than in the Cauchy distribution,

resulting in a heavier-tailed PDF.

In the M-estimation theory we want to estimate a deter-

ministic but unknown parameter θ of a real-valued signal s(i; θ)
corrupted by additive noise from a set of noisy observations

{x(i)}N
i=1. M–estimate is given by the solution to an opti-

mization problem

θ̂ = argmin
θ∈Θ

N∑
i=1

ρ(x(i)− s(i; θ))

or by an implicit equation

N∑
i=1

ψ(x(i) − s(i; θ̂)) = 0

where ρ is an arbitrary cost function to be designed, Θ is the

solution space, and ψ(x) = (∂/∂θ)ρ(x).
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Since we are also interested in filtering of corrupted sig-

nals, and noting that location estimators have been used suc-

cessfully as moving window based filters (yielding significant

performance improvements over traditional robust methods

under algebraic–tailed environments [1, 4]), we focus to the

location estimation problem in the following.

Theorem 1 Consider a set ofN i.i.d. observations each obey-
ing the GCD with scale parameter σ and tail constant p. The
ML estimate of location is given by

θ̂ = argmin
θ

[ N∑
i=1

log{σp + |x(i)− θ|p}
]
. (1)

Since the performance of the estimator depends on the

objective function derived from the PDF in the following the

properties of the objective function are analyzed.

Proposition 1 Let Q(θ) =
∑N

i=1 log{σp + |x(i) − θ|p} de-
note the objective function (for fixed σ and p) and {x[i]}N

i=1

the order statistics of x. Then the following statements hold.
1. Q(θ) is strictly increasing for θ > x[N ] and strictly

decreasing for θ < x[1].
2. All local extrema ofQ(θ) lie in the interval [x[1], x[N ]].
3. If 0 < p ≤ 1, then the local minimas are the input

samples. If 1 < p ≤ 2, then the objective function has
at most 2N − 1 local extrema points and therefore a
finite set of local minima.

4. If 0 < p ≤ 1, the solution is one of the input sam-
ples(selection type filter). If 1 < p ≤ 2, the solution is
one of the local extrema.

The M–GC estimator has two adjustable parameters, σ
and p. The tail constant, p, depends on the heaviness of the

tails of the underlying distribution. When p ≤ 1, the estima-

tor behaves as a selection type filter and as p → 0 it is more

robust to heavier tailed distributions. When p > 1 the loca-

tion estimate is in the range of the input samples and can be

easily computed. There are two particular cases of the GCD

that have recently been studied, which are the estimators for

the Cauchy and the Meridian distributions that led to the Myr-

iad and Meridian estimators, respectively [1, 4]. The myriad

and meridian estimators have tunable parameters as it’s the

case in M–GC estimators. The tunable parameter controls the

behavior of the objective function and therefore the properties

of the estimate. The following corollaries show the behavior

of the M–GC estimator when the tunable parameter goes to

either 0 or ∞ and more importantly show that it subsumes

other classical families of estimators.

Corollary 1 Given a set of input samples {x(i)}N
i=1 , the M–

GC estimate converges to the ML GGD estimate (Lp norm as
cost function) as σ →∞.

lim
σ→∞ θ̂ = argmin

θ

N∑
i=1

|x(i) − θ|p. (2)

Corollary 2 Given a set of input samples {x(i)}N
i=1 , the M–

GC estimate converges to a mode type estimator as σ → 0.
This is

lim
σ→0

θ̂ = arg min
x(j)∈M

[ ∏
i,x(i) �=x(j)

|x(i)− x(j)|
]

(3)

whereM is the set of most repeated values.

The proofs of these corollaries are not included due to

space constraints but can be found in [5]. In the case when

p = 1 and p = 2 these results were already presented in [4]

and [1] for the meridian and myriad filters. The importance

of this limiting behavior is that M–GC estimators include M–

estimators with the Lp norm (0 < p ≤ 2) as cost func-

tion which are optimal for the GGD family and also include

mode–type estimators which are robust to outlier rejection,

providing a wide range of optimality for different distribu-

tions.

The M–GC estimator was derived as an ML estimator for

the GCD density and thus belong to the class of M–estimators

as a more general one, defining the cost function ρ(x) =
log{σp + |x|p}. In M–estimators, the influence function is

proportional to ψ(x) if it exists and determines the effect of

contamination of the estimator. For the M–GC estimator

ψ(x) =
p|x|p−1sgn(x)
σp + |x|p . (4)

It can be noticed that limx→±∞ ψ(x) = 0, meaning that

is asymptotically redescending, i.e., the effect of the errors

monotonically decreases as the error increase. Redescendency

is a necessary and sufficient condition for outlier rejection [2].

Since M–GC estimates are M–estimates and ψ(x) is odd

and bounded, then θ̂ → θ as N → ∞ in probability, and are

consistent. The variance of θ̂ decreases with increasing N .

Theorem 2 Consider a set ofN i.i.d. observations each obey-
ing the GCD with tail constant p and varying scale parameter
ν(i) = σ/(h(i))1/p. The ML estimate of location is given by

θ̂ = argmin
θ

[ N∑
i=1

log{σp + h(i)|x(i) − θ|p}
]
. (5)

Theorem 2 can be used to extend the M–GC estimator to

a weighted filter structure keeping all the robust properties of

the M–GC estimator, the weighted M–GC filter. The M–GC

filter can be extended to admit real–valued weights using the

sign–coupling approach [4].

3. MULTIPARAMETER ESTIMATION

The location estimate problem defined by the M–GC depends

on the parameters σ and p which determine the properties

of the location estimate. To solve this problem in a filter-

ing scenario and find the optimal tunable parameters (if the
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model considered is GCD) we consider multiparameter M–

estimates. The idea behind this scheme is to use a small set

of samples of the signal to be filtered to estimate σ and p and

then use these values through the filtering process.

Let {x(i)}N
i=1 be a set of independent observations with

common GCD with deterministic but unknown parameters θ,

σ and p. Let g(x; θ, σ, p) = log[f(x; θ, σ, p)], then joint es-

timates are the solutions to the following maximization prob-

lem

(θ̂, σ̂, p̂) = argmax
θ,σ,p

g(x; θ, σ, p). (6)

The solution to this optimization problem is obtained by solv-

ing a set of simultaneous equations. Differentiating the log–

likelihood and doing some algebraic manipulations the simul-

taneous equations are rewritten as

∂g

∂θ
=

N∑
i=1

−p|x(i)− θ|p−1sgn(x(i)− θ)
σp + |x(i)− θ|p = 0 (7)

∂g

∂σ
=

N∑
i=1

σp − |x(i)− θ|p
σp + |x(i)− θ|p = 0 (8)

and

∂g

∂p
=

N∑
i=1

[
1
2p
− σp log σ − |x(i)− θ|p log |x(i)− θ|

p(σp − |x(i)− θ|p) (9)

− log{σ
p + |x(i)− θ|p}

p2
− 1
p2
Ψ

(
2
p

)
+

1
p2
Ψ

(
1
p

)]
= 0.

where g ≡ g(x; θ, σ, p) and Ψ(x) is the digamma function. It

can be noticed that (7) is the implicit equation for the M–GC

estimator with ψ as defined in (4) so the location estimate has

the same properties.

Of note is that log f(x; θ, σ, p) has a unique maximum in

σ for fixed θ and p, and also has a unique maximum for p ∈
(0, 2] for fixed θ and σ [5]. In the following, we provide an

algorithm to simultaneously solve the above set of equations.

Flip Flop Algorithm: For a given set of data {x(i)}N
i=1,

we propose to find the optimal joint parameter estimates by

the following algorithm with the superscript denoting itera-

tion number.

1. Initialize σ(0) and θ(0).
2. Estimate p̂(m) as the solution of (9).

3. Estimate θ̂(m) as the solution of (7).

4. Estimate σ̂(m) as the solution of (8).

5. Repeat steps 2-4 until |θ̂(m) − θ̂(m−1)| < ε1, |σ̂(m) −
σ̂(m−1)| < ε2 and |p̂(m)−p̂(m−1)| < ε3, where ε1, ε2, ε3
are small positive numbers.

The algorithm will converge to a local minimum. Exper-

imental results have shown that initializing θ as the median

and σ as the MAD and then computing p as a solution for (9)

will yield most of the time to the global solution and accel-

erate the convergence. In the classical literature fixed point

algorithms have been successfully used in the computation of

M-estimates [1, 2]. Hence, in the following, we solve items

2–4 of the flip–flop algorithm using fixed point algorithms.

Fixed–Point Algorithms: Recall that when 0 < p ≤ 1 the

solution can be found as the input sample that minimizes the

objective function. We solve (7) for the 1 < p ≤ 2 case in

the following. The fixed point recursion for this case can be

written as

θ̂(j+1) =
∑N

i=1 wi(θ̂(j))x(i)∑N
i=1 wi(θ̂(j))

(10)

withwi(θ̂(j)) = p|x(i)− θ̂(j)|p−2/(σp+ |x(i)− θ̂(j)|p)where

the subscript denotes the iteration number. The algorithm

converges when |θ̂(j+1) − θ̂(j)| < δ1 where δ1 is a small

number. However since the objective function has more than

one extrema point the algorithm can converge to any of these

points. In the case when 1 < p ≤ 2, a minima of the objective

function, hence, is found using the estimate of the preceding

iteration of the flip flop algorithm as initial point for the fixed

point search. Since in the first iteration the median was used

as first estimate the algorithm converges quickly to a local

minima.

Similarly for (8) the recursion can be written as

σ̂(j+1) =
(∑N

i=1 bi(σ̂(j))x(i)∑N
i=1 bi(σ̂(j))

) 1
p

(11)

with bi(σ̂(j)) = 1/(σ̂p
(j) + |x(i) − θ|p). The algorithm con-

verges when |σ̂(j+1)− σ̂(j)| < δ2 for δ2 a small positive num-

ber. Since the objective function has only one minimum for

fixed θ and p the recursion will converge.

The recursion computing the parameter p is given by

p̂(j+1) =
2
N

N∑
i=1

[
Ψ

(
2
p̂(j)

)
−Ψ

(
1
p̂(j)

)
(12)

+ log{σp̂(j) + |x(i)− θ|p̂(j)}

+
p̂(j)(σp̂(j) log σ − |x(i)− θ|p̂(j) log |x(i)− θ|)

σp̂(j) − |x(i)− θ|p̂(j)

]
.

Noting that the search space is the interval I = (0, 2], the

function g can be evaluated for a finite set of points P ∈ I
and look for the value that maximizes g and then take it as the

initial point for the search.

4. NUMERICAL RESULTS

Simulations to validate the multiparameter estimation algo-

rithm were carried out and are summarized in Table 1, for

p = 2, with θ = 0 and σ = 1 for the original distribution.

The experiments used the flip flop algorithm varying the sam-

ple length from 10 to 1000. For each block length the exper-

iments were run 1000 times and the presented results are the

average on those 1000 trials.

The flip flop algorithm converges in few iterations. Fig-

ure 1 depicts the MSE curves for each of the estimates θ̂, σ̂, p̂
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Table 1. Results for GCD process with (θ, σ, p) = (0, 1, 2).
N 10 100 1000

θ̂ 0.0035 -0.0009 -0.0002

MSE 0.0302 2.4889× 10−3 1.7812× 10−4

σ̂ 0.9563 1.0224 1.0186

MSE 0.0016 1.7663× 10−5 1.1911× 10−6

p̂ 1.5816 1.8273 1.9569

MSE 0.0519 0.0109 1.5783× 10−6
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Fig. 1. Evolution of the MSE in 5 iterations of the flip flop

algorithm.

for the first five iterations. The experiment was run doing

100 independent realizations of the algorithm with data drawn

from the same distribution (θ = 0, σ = 1 and p = 1.5).

The M–GC filter is optimal for GCD noise but is also ro-

bust in general impulsive environments. To compare the ro-

bustness of the M–GC filter with other robust filtering schemes

experiments with the symmetric α–stable distribution were

made. The experiment uses a power line communication prob-

lem with finite equiprobable alphabet v = {−2,−1, 1, 2} and

a channel modeled as additive noise. The noise was white,

zero–mean, α–stable with α = 0.4 and γ = 1. The filtering

process was made using sliding windows of length 9. For the

M–GC the resulting p was 0.756 and σ = 0.8963 using the

first 50 samples for training. The M–GC filter was compared

to the state–of–the–art robust filters: FLOM, median, myriad

and meridian. The results in Fig. 2 show that the M–GCD

filter is more robust to impulsive noise than the other filters.

The M–GC filter benefits from the selection of the scale and

tail parameters and therefore perform at least as good as the

myriad and meridian filters in heavy-tailed environments and

although is not optimal for α–stable environments it performs

as good as the FLOM filter, which it is.

5. CONCLUSIONS

This paper derives the ML location estimate for the General-

ized Cauchy distribution and extends its likelihood function as
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Fig. 2. Power line communication enhancement. Filtering

results with: (a) Original, (b) FLOM (c) Median, (d) Myriad,

(e) Meridian, (f) M–GC.

an M–estimator. Noting that the meridian and myriad filters

come from ML estimates for the Meridian and Cauchy distri-

butions, a more general filtering structure is proposed based

on the maximum likelihood estimate of the GCD. Properties

of the cost function of the M–GC estimator are derived and

the robustness of the M–GC estimator is analyzed through its

influence function. A robust filtering structure based on the

M–GC estimator is proposed and its extension to admit real

valued weights is presented. Methods to adjust the scale and

tail parameters are proposed and evaluated. The M–GC filter

offers a robust structure for signal processing in heavy tailed

signal models and has the advantage of having the scale and

tail parameter to adjust to the signal environment.
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