
MAXIMUM KERNEL DENSITY ESTIMATOR FOR ROBUST FITTING 
 

Hanzi Wang 
Center for Computer-Integrated Surgical System and Technology 

Department of Computer Science 
The Johns Hopkins University, Baltimore, MD, 21218 

 
ABSTRACT 

 
Robust model fitting plays an important role in many 
computer vision applications. In this paper, we propose a 
new robust estimator — Maximum Kernel Density 
Estimator (MKDE) based on the nonparametric kernel 
density estimation technique. It can be viewed as an 
improved version of our previously proposed Quick 
Maximum Density Power Estimator (QMDPE) [15]. 
Compared with QMDPE, MKDE does not require running 
the mean shift algorithm for each candidate fit. Thus, the 
computational complexity of MKDE is greatly reduced 
while the accuracy of MKDE is comparable to QMDPE and 
outperforms that of other popular robust estimators such as 
LMedS and RANSAC. We evaluate MKDE in robust line 
fitting and fundamental matrix estimation. Experiments 
show that MKDE has achieved promising results.   
 

Index Terms — machine vision, robustness, model 
fitting, kernel density estimation, algorithms 
 

1. INTRODUCTION 
 
Robust regression techniques have been widely used in 
many computer vision applications such as range image 
segmentation [15, 19], fundamental matrix estimation [10], 
optical flow calculation [1, 18], visual tracking [17], etc. 
The key behind those robust approaches is in that the 
approaches can resist the influence of outliers, which do not 
belong to the model to fit. In real situations, data are often 
noisy and contaminated by outliers such as mismatches, 
wrong segmentation, multiple structures. One main task in 
computer vision community is to find a robust estimator which 
can tolerate highly contaminated data while the computational 
complexity of the estimator is reasonably low.  

There are a lot of robust estimators having been 
proposed in the literature (e.g., [2, 4, 6, 8-10, 12, 15, 19]). 
The maximum-likelihood estimators (M-estimators) [6] 
minimize the sum of symmetric, positive-definite functions 
of the residuals with a unique minimum at zero. The Least 
Median of Squares (LMedS) estimator [9] minimizes the 
median of squared residuals. However, both the M-
estimators and the LMedS estimator can not tolerate more 
than 50% outliers. When data involve more than 50% 
outliers, both methods break down.  

Great efforts have been made to seek for highly robust 
estimators which can tolerate more than 50% outliers. 
Random SAmple CONsensus (RANSAC) [4] is such a 
robust estimator which, given a correct estimate of the scale 
of inliers, can be robust to more than 50% outliers. Unlike 
M-estimators and LMedS which find a model by 
minimizing their objective functions, RANSAC maximizes 
its objective function, i.e., the number of samples within the 
given scale of inliers (or error tolerance). However, the 
performance of RANSAC largely depends on the given 
scale or error tolerance. MUSE [8], RESC [19] and 
MINPRAN [12] can deal with more than 50% outliers as 
well. However, MUSE needs a lookup table for the scale 
estimator correction and it can not handle extreme outliers; 
RESC needs the user to tune many parameters in 
compressing a histogram. MINPRAN [12] is computational 
expensive and can not effectively deal with multiple 
structures.  

Recently we have proposed a robust estimator QMDPE 
[15] which uses nonparametric density estimation and 
density gradient estimation techniques. In this paper, we, 
based on QMDPE, propose a new robust estimator — 
MKDE (Maximum Kernel Density Estimator) which uses 
the nonparametric kernel density estimation technique.  
Compared with QMDPE, the procedure of MKDE is 
simplified and the computational efficiency of MKDE is 
improved. MKDE is usually 2 to 4 times faster than 
QMDPE while it achieves comparable accuracy as QMDPE. 
Compared with RANSAC, MKDE is less sensitive to the 
user-specified error tolerance (or scale) and has similar 
computational efficiency.   

  
2. METHODOLOGY 

 
We begin with simply reviewing the QMDPE algorithm 
proposed in [15]. Then we propose MKDE and the 
complete procedure of MKDE. 
 
2.1. Review of QMDPE  
 
Let yi is a response variable; and 1( ,..., )i ipx x  are the 
explanatory variables. The classical linear model can be 
described as followings:  

           1 1 ... ( 1,..., )i i ip p iy x x e i nθ θ= + + + =          (1) 
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where 1( ) 'pθ θ θ= ⋅⋅⋅ are the regression coefficients. 
The error term ei is usually assumed to be normally 
distributed with (0, )N σ .  

The residual ri for the i'th set of observed data is the 
difference between the estimated value ˆiy  

( 1 1̂
ˆˆ ...i i ip py x xθ θ= + + ) and the actually observed value yi:  

                       1 1̂
ˆ...i i i ip pr y x xθ θ= − − −               (2) 

The purpose of regression techniques is to estimate the 
regression coefficients by minimizing (such as M-
estimators, LMedS) or maximizing (e.g., RANSAC, 
QMDPE etc.) an objective function of residuals of the data. 
QMDPE assumes when a model is correctly fitted, the 
absolute residual value corresponding to a local peak pλ , 
which is obtained by running a mean shift procedure [3] 
with initial position of zero in residual space, should be as 
small as possible; and the probability density ˆ ( )pf λ  at 

pλ should be as high as possible. QMDPE can be written as: 

         ˆ arg max ( , )pO
θ

θ λ θ=                 (3) 
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where ν  is a constant factor that adjusts the relative 
influence of the probability density ˆ ( )pfθ λ  to the residual 
at the point pλ .  

 
2.2. MKDE 
 
QMDPE has to run the mean shift algorithm for each 
candidate to find pλ which corresponds to a local peak. Thus, 
the computational efficiency of QMDPE is lowered. In this 
section, we modify QMDPE and derive the MKDE method.  

Unlike LMedS and M-estimators which assume inliers 
occupy an absolute majority of the data, we assume that 
inliers occupy a relative majority, with a Gaussian-like 
distribution, of the data points. When a model is correctly 
fitted, the residuals of inliers should be as close to zero as 
possible. Thus, the probability density at the origin point 
(P0) with zero residual value in residual space should be as 
high ass possible. Let ˆ*f  be the probability density at the 
point P0 in residual space.  MKDE can be written as:  

                             *ˆ ˆarg max fθ
θ

θ =                     (5) 

Let {ri}i=1,…,n be a set of n residual points, the kernel 
density ˆ*f  with kernel K and bandwidth h is defined as 
follows: 
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nh h=

=                  (6) 

We employ the Epanechnikov kernel [11] which yields 
the minimum mean integrated square error (MISE):  

        
1

d
e

1 c (d 2)(1 ) if 1
( ) 2

0 otherwise

T Tx x x x
K x

− + − <
=  ( 7 ) 

where cd is the volume of the unit d-dimensional sphere. 
The dimension of residual space is 1. 

Compared with QMDPE in equations (3) and (4), 
MKDE is different in that (1) there is no need to estimate 
the position of local peak pλ . Thus, we do not need to run 
the mean shift algorithm for each candidate fit in MKDE; 
(2) MKDE is theoretically solid. The factor ν  in QMDPE is 
not required in MKDE. Experiments in Section 3 show that 
MKDE is very robust to outliers. MKDE can achieve 
comparable (or better) performance to QMDPE while it is 
two to four times faster than QMDPE.  

Like QMDPE, we employ a hypothesize-and-select 
scheme in which we randomly sample enough subsets η  
and choose the best candidate that yields the highest score 
(i.e., ˆ*f ). Let P be the probability that at least one “clean” 
p-subset is chosen; ς  be the percentage of outliers involved 
in the data. We have: 

                                  log(1 )
log[1 (1- ) ]p

Pη
ς

−=
−

                           (8)  

Our work is different to the work of Chen and Meer [2] 
and its variants [10, 13] in that the latter ones place 
emphasis on the projection pursuit paradigm while MKDE 
considers the kernel density of the mode in residual space. 
The methods in [2, 10, 13] need to seek for the mode by 
maximizing the density in the projection space, which 
maximizes the projection index. In contrast, MKDE seek for 
the mode by maximizing the kernel density of the mode in 
residual space. Thus, MKDE is computationally efficient.  

 
2.3. The procedure of MKDE 
 
The complete procedure of the MKDE algorithm can be 
described as follows: 
Step 0: Input a set of data points, the bandwidth h, and a 

repetition numberη .  
Step 1: Randomly choose a p-subset. 
Step 2: Estimate the model parameters by the chosen p-

subset.  
Step 3: Calculate the residuals of all data points to the 

estimated parameters. 
Step 4: Calculate a score for the p-subset, according to 

equations (6) and (7). 
Step 5: Repeat step (1) to step (4) η  times.  
Step 6: Output the parameters with the highest score. 
Step 7: (Optional) Once the parameters of the model are 

estimated, a robust scale estimator (TSSE [16])  
can be employed to refine the scale of inliers.   
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3. EXPERIMENTS 
 

We evaluate our method in robust line fitting and 
fundamental matrix estimation. We also compare the 
performance of MKDE with those of LMedS, RANSAC, 
and QMDPE. In all experiments, the four methods are 
implemented 20 times and the averaged results are used.  
 
3.1. Robust line fitting 
 
First, we test the influence of outliers on the performance of 
the four methods. We generate a one-step signal (y = Ax + 
B) with total 1000 data points: line 1: x: (0–65), A = 0, B = 
70, the number of data points will be decreased with the 
increase of randomly distributed outliers so that outlier 
percentageς changes from 0 to 85%; line 2: x: (65–100), A 
= 0, B = 20, the number of data points is fixed at 100. Data 
points on both lines are corrupted by Gaussian noise with 
zero mean and unit standard variance. 
 

 
 
 
 
 
 
 
 

          (a)    (b)      
Fig. 1. Breakdown plot for the four methods: (a) and (b) estimation 
errors in A and B vs. the percentage of outliers. RANSAC, 
QMDPE and MKDE are given the correct scale estimate of inliers. 

As shown in Figure 1, the LMedS estimator achieves 
good results when the outlier percentage is less than 50% 
but it begins to break down when the data involve more 
than 50% outliers. In contrast, RANSAC, QMDPE and 
MKDE with the correct scale estimate have achieved accurate 
results even when the data contain more than 80% outliers.  

 
 
 
 
 
 
 
 
 
           (a)     (b) 
Fig. 2. Breakdown plot for the four methods: (a) and (b) estimation 
errors in A and B vs. the percentage of outliers.  RANSAC, 
QMDPE and MKDE are given a scale which is 5 times of the 
correct scale. 

However, in real situations, the accurate scale estimate 
of inliers is not always available. In some cases, we can 
only give an approximate estimate of the scale. It is 
interesting to evaluate the influence of the given scale on 

the performance of the methods. In figure 2 and Table 1, we 
use a scale which is 5 times lager than the true scale. The 
performance of LMedS does not depend on the input scale 
and LMedS achieves similar results as in Figure 1.  Among 
RANSAC, QMDPE and MKDE, RANSAC achieves 
inaccurate results throughout the tests. This means that the 
performance of RANSAC is affected when the scale is 
biased. Both QMDPE and MKDE obtain good results for all 
tests while MKDE achieves relatively more accurate results 
than QMDPE.   

Table 1. Mean error in A and B for the four methods. MKDE 
achieves the best results among the four methods. 

 
 
 
 
 
 
 
 
 

           (a)                                                  (b) 
Fig. 3. Influence of the scale on the performance of RANSAC, 
QMDPE and MKDE. (a) and (b) estimation errors in A and B vs. 
the scale.   

 
In figure 3, we generate a signal, which is similar to the 

signal used in figure 1, with 75% outliers. We change the 
value of the scale from 1 to 20. As we can see, the 
performance of RANSAC is greatly affected by the scale 
value. In comparison, the performance of QMDPE and 
MKDE is much less sensitive to the change in the scale value.   

 
 
 
 
 
 
 
 
 

Fig. 4. Processing time of the four methods vs. the sampling 
timesη .  All methods are performed in MATLAB code. 

Figure 4 shows the processing time of the four methods 
with respect to the number of sampling times. From figure 4 
we can see that the computational time of QMDPE is the 
most expensive while RANSAC is the fastest among the 
four methods. The processing time of MKDE is slightly 
slower than that of RANSAC but it is relatively faster than 
LMedS. Generally speaking, MKDE is about 2 to 4 times 
faster than QMDPE.  

 LMedS RANSAC QMDPE MKDE 
Mean Error in A 0.0675 0.0408 0.0116 0.0047 
Mean Error in B 1.5740 1.4235 0.3766 0.1588 
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3.2. Fundamental matrix estimation 
 

We also apply our method to estimate the fundamental 
matrix between multiple views. We use two frames of the 
Corridor sequence (bt.000 and bt.001) from 
http://www.robots.ox.ac.uk/~vgg/data/. We employ SIFT 
matching algorithm [7] to detect the matches between the 
two images. There are 612 matches detected. We add 700 
random matches to increase the percentage of outliers so 
that the outlier percentage is more than 50%. Image points 
are normalized by using the Hartley’s algorithm [5] before 
we employ the 7 points algorithm [14] to solve for candidate fits. 

To evaluate the performance of the methods, we use the 
following four error measures: Sum of absolute differences 
in the left epipole (SADL); Sum of absolute differences in 
the right epipole (SADR); Mean of absolute reprojection 
errors (MARE); Standard variance of reprojection errors 
(SVRE).  

 
 
 
 
 
 
 
 

            (a)             (b) 
Fig. 5. One of the 20 tests. (a) the input matches (SIFT matches 
and random matches); (b) the matches selected by MKDE. 

Figure 5 illustrates that MKDE is robust to mismatches 
(i.e., outliers) and can select correct matches (note: there is 
one random match is selected by MKDE as it satisfies the 
epipolar constraint). Table 2 shows that LMedS totally 
breaks down because it can not tolerate more than 50% 
outliers. MKDE achieves the most accurate results in SADL 
and SADR. In the measure of MARE and SVRE, MKDE 
performs relatively better than QMDPE but slightly worse 
than RANSAC.     

Table 2.  Error measurement of the four methods. 
 

4.  CONCLUSIONS  
 

The proposed MKDE algorithm employs the nonparametric 
kernel density estimation technique in determining the merit 
of model fit. The performance of MKDE is compared with 
those of popular robust estimators (LMedS, RANSAC) and 
recently proposed robust estimator QMDPE. MKDE is 
simple and computationally efficient, and it is 2 to 4 times 
faster than QMDPE. The scale estimate of inliers has a 

weaker influence on the performance of MKDE than that of 
RANSAC. MKDE is very robust to outliers and can tolerate 
more than 50% outliers. Experiments show that MKDE can 
successfully deal with data involving more than 80% outliers. 
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