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ABSTRACT

It is well known that compressed sensing problems reduce to

solving large under-determined systems of equations. To assure

that the problem is well defined, i.e., that the solution is unique the

vector of unknowns is of course assumed to be sparse. Nonethe-

less, even when the solution is unique, finding it in general may be

computationally difficult. However, starting with the seminal work

of [2], it has been shown that linear programming techniques, ob-

tained from an l1-norm relaxation of the original non-convex prob-
lem, can provably find the unknown vector in certain instances. In

particular, using a certain restricted isometry property, [2] shows

that for measurement matrices chosen from a random Gaussian

ensemble, l1 optimization can find the correct solution with over-
whelming probability even when the number of non-zero entries

of the unknown vector is proportional to the number of measure-

ments (and the total number of unknowns). The subsequent paper

[1] uses results on neighborly polytopes from [5] to give a “sharp”

bound on what this proportionality should be in the Gaussian case.

In the current paper, we observe that what matters is not so much

the distribution from which the entries of the measurement matrix

A are drawn, but rather the statistics of the null-space of A. Using
this observation, we provide an alternative proof of the main re-

sult of [2] by analyzing matrices whose null-space is isotropic (of

which i.i.d. Gaussian ensembles are a special case).

Index Terms: compressed sensing, l1-optimization

1. INTRODUCTION
In this paper we are interested in compressed sensing problems.

As is well known these problems are very easy to pose and very

difficult to solve. Namely, we would like to find x such that

Ax = y (1)

whereA is anm×nmeasurement matrix, y ism×1measurement
vector, and x is n × 1 unknown k-sparse vector. In the rest of
the paper we will assume that the number of the measurements

is m = αn and the number of the non-zero components of x
is k = βn, where 0 < β < 1 and 0 < α < 1 are constants
independent of n. This problem setup is quite natural and arises
in many practical applications (see e.g. [15, 16] and references

therein).

A particular way of solving (1) which recently generated a

large amount of research is called l1-optimization [2]. It proposes
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solving the following problem

min ‖x‖1

subject to Ax = y. (2)

Quite remarkably in [2] the authors were able to show that if the

number of the measurementsm = αn, α, and n are given, the ma-
trix A is given and satisfies a special property called the restricted
isometry property (RIP), then any unknown vector x with no more

than k = βn (where β is an absolute constant which of course is
a function of α, independent of n, and explicitly calculated in [2])
non-zero elements can be recovered by solving (2). As expected,

this assumes that y was in fact generated by that x and given to

us (more on the case when the available measurements are noisy

versions of y interested reader can find in e.g. [13, 14]).

As can be immediately seen, the previous result heavily relies

on the assumption that the measurement matrixA satisfies the RIP
condition. What is indeed remarkable about [2] is the fact that

for several specific classes of matrices the RIP holds with over-

whelming probability. It happens that if the components of A are
i.i.d. zero mean Gaussian or Bernoulli the RIP condition holds

with overwhelming probability [2, 3, 4]. However, it should be

noted that the RIP is only a sufficient condition for l1-optimization
to produce a solution of (1).

Instead of characterizing the m × n matrix A through the
RIP condition, in [1] the authors assume that A constitutes a k-
neighborly poly-tope. It turns out (as shown in [1]) that this char-

acterization of the matrix A is in fact a necessary and sufficient
condition for (2) to produce the solution of (1). Furthermore, us-

ing the results of [5], it can be shown that if the matrix A has i.i.d.
zero-mean Gaussian entries with overwhelming probability it also

constitutes a k-neighborly poly-tope. Of course, the precise rela-
tion between m and k in order for this to happen is characterized
in [1] as well. It should also be noted that for a given valuem i.e.
for a given value of the constant α, the value of the constant β is
significantly better in [1] than in [2]. Furthermore, the values of

constants β obtained for different values of α in [1] approach the
ones obtained by simulation as n −→ ∞.
In this paper we will make use of another characterization that

guarantees l1 optimization works for the matrixA. This character-
ization will be equivalent to the neighborly polytope characteriza-

tion from [1] since it also constitutes both necessary and sufficient

conditions which the matrix A should satisfy in order that (2) be
the solution of (1). However, we will provide much simpler analy-

sis that shows that a non-zero β is achievable and further provides
a lower bound for it.
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2. NULL-SPACE CHARACTERIZATION

In this section we introduce another useful characterization of the

matrix A. The following theorem can be proved (see [10, 11, 12]
for variation of this result).

Theorem 1 Assume that anm×nmeasurement matrixA is given.
Further, assume that y = Ax and x has at most k non-zero ele-
ments and that w is an n × 1 vector. Let K be any subset of
{1, 2, . . . , n} such that |K| = k and let Ki denote the i-th el-
ement of K. Further, let K̄ = {1, 2, . . . , n}/K. Then (2) will
produce the solution of (1) if and only if

(∀w ∈ Rn|Aw = 0) and ∀K,

kX
i=1

|wKi
| ≤

n−kX
i=1

|wK̄i
|.
(3)

Proof 1 Omitted [10, 11, 12].
Remark:Of course, we need not to check (3) for all subsets K;
checking the subset with the k largest (in absolute value) elements
of w is sufficient. However, Theorem 1 will be more convenient

for our subsequent analysis.

Now, let Z be a basis of the null space of A, i.e. let Z be a
matrix such that AZ = 0. Clearly, Z is an n × (n − m) matrix.
Furthermore, any n × 1 vectorw from the null-space of A can be
represented as Zv where v ∈ Rn−m. Then the condition from the

Theorem 1 can be transformed to

kX
i=1

|ZKi
v| ≤

n−kX
i=1

|ZK̄i
v| ∀v ∈ Rn−m,∀K s. t. |K| = k

(4)
where Zi is the i-th row of the matrixZ. To facilitate writing let Iv
denote the event

Pk
i=1 |ZKi

v| ≤Pn−k
i=1 |ZK̄i

v|. In the following
section we will for a given value α = m

n
, determine the value of

β = k
n
such that (4) is satisfied with overwhelming probability.

The standard results on compressed sensing assume that the

matrix A has i.i.d. N (0, 1) entries. In this case, the following
lemma gives a characterization of the resulting null-space.

Lemma 1 LetA ∈ Rm×n be a random matrix with i.i.d. N (0, 1)
entries. Then the following statements hold:

• The distribution ofA is left-rotationally invariant, PA(A) =
PA(AΘ),ΘΘ∗ = Θ∗Θ = I

• The distribution of Z, any basis of the null-space of A is
right-rotationally invariant. PZ(Z) = PZ(Θ∗Z), ΘΘ∗ =
Θ∗Θ = I

• It is always possible to choose a basis for the null-space
such that Z ∈ Rn×(n−m) has i.i.d. N (0, 1) entries.

In view of Theorem 1 and Lemma 1 what matters is that the null-

space of A be rotationally invariant. For any such A, the sharp
bounds of ([1]), for example, apply. In this paper, we shall analyze

the null-space directly. [It should be noted that we will present

the result for the case when the matrix Z has real Gaussian en-
tries; however it is straightforward to extend it to the case when

the matrix Z is comprised of complex Gaussian entries.]

3. PROBABILISTIC ANALYSIS OF THE NULL-SPACE
CHARACTERIZATION

In this section we probabilistically analyze the validity of (4). Be-

fore proceeding further, let us recall what exactly is the problem

that we will solve in this section.

Assume that we are given an n × (n − m) matrix Z. Let
Zi be the i-th row of Z and let Zij be the i, j-th element of Z.
Further, let Zij be i.i.d. zero-mean unit-variance Gaussian random

variables. Let v ∈ Rn−m be any real vector of length (n − m).
Let further α = m

n
be a given constant independent of n. Then we

will find β = k
n
such that

lim
n→∞

P (Iv ∀v ∈ Rn−m,∀K ⊂ {1, 2, . . . , n}, |K| = k) = 1.

(5)

Proving (5) will of course be enough to prove that for all ran-

dom matrices A which have isotropically distributed null-space,
(2) with overwhelming probability solves (1). In order to prove (5)

we will actually prove that

lim
n→∞

Pf = 0, (6)

Pf = P (∃v ∈ Rn−m,∃K ⊂ {1, 2, . . . , n}, |K| = k s. t. Īv)
and Īv denotes the complement of Iv, i.e. it denotes the eventPk

i=1 |ZKi
v| <

Pn−k
i=1 |ZK̄i

v|. Now, using the union bound we
can write

Pf ≤
(n

k
)X

l=1

P (∃v ∈ Rn−m
s. t.

kX
i=1

|Z
K

(l)
i

v| ≥
n−kX
i=1

|Z
K̄

(l)
i

v|)
(7)

where K(l) is a subset of {1, 2, . . . , n} and |K(l)| = k. Clearly
the number of these subsets is

`
n
k

´
and hence the summation in

(7) goes from 1 to
`

n
k

´
. Since the probability in (7) is insensitive

to scaling of v by a constant we can restrict v to lie on the unit

sphere (in l2-norm). Furthermore, since the elements of the matrix
Z are i.i.d. all

`
n
k

´
terms in the first summation on the right hand

side of (7) will then be equal. Therefore we can further write

Pf ≤
 

n

k

!
P (∃v ∈ Rn−m, ||v||2 = 1 s. t.

kX
i=1

|Ziv| ≥
nX

i=k+1

|Ziv|).
(8)

The main difficulty in computing the probability on the right hand

side of (8) is in the fact that the vector v (i.e. its components) is

continuous. Our approach will be based on the discrete covering

of the unit sphere. In order to do that we will use small spheres

of radius ε. It can be shown [6, 7, 4] that ε−(n−m) spheres of

radius ε is enough to cover the surface of the (n−m)-dimensional
unit sphere. Let the coordinates of the centers of these ε−(n−m)

small spheres be the vectors zt, t = 1, . . . , ε−(n−m). Clearly,

1−ε ≤ ||zt||2 ≤ 1+ε. Further, let St, t = 1, . . . , ε−(n−m) denote

the ε−(n−m) small spheres. Since they cover the unit sphere we

have

(v ∈ Rn−m | ||v||2 = 1) ⊂
ε−(n−m)[

t=1

St.

Then using the union bound over the spheres we can further write

Pf ≤
 

n

k

!
P (∃v ∈

ε−(n−m)[
t=1

St s. t.

kX
i=1

|Ziv| ≥
nX

i=k+1

|Ziv|)

≤
`

n
k

´
ε(n−m)

max
t

P (∃v ∈ St s. t.

kX
i=1

|Ziv| ≥
nX

i=k+1

|Ziv|).

(9)
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Every vector v covered by the sphere St can be represented as

v = zt + e where ||e||2 ≤ ε. Then we have

max
t

P (∃v ∈ St s. t.

kX
i=1

|Ziv| ≥
nX

i=k+1

|Ziv|)

= max
t

P (∃e, ||e||2 ≤ ε s. t.
kX

i=1

|Zi(zt+e)| ≥
nX

i=k+1

|Zi(zt+e)|).

(10)

Given the symmetry of the problem it should be noted that with-

out loss of generality we can assume zt = [||zt||2, 0, 0, . . . , 0].
Further, using the results from [9] we have that Nn−m points can

be located on the sphere of radius cε centered at zt such that St

(whose radius is ε) is inside a poly-tope determined by them and

c ≤

8><
>:

1

(1−ln(N))

r
2 ln(N)−

ln(n−m)
n−m

if N <
√

2

1

1−(1+ 1
N2 ) 1

2N2
otherwise.

(11)

To get a feeling what values N and c can take we refer to [8]

Fig. 1. Covering of the unit sphere
where it was stated that 3n−m points can be located on the sphere

of radius
q

9
8
ε centered at zt such that St is inside a poly-tope

determined by them.

Let us call the poly-tope determined by Nn−m points Pt.

Let es
t , s = 1, 2, . . . , Nn−m be its Nn−m corner points. Since

|Zi(zt + e)| ≤ |Zizt| + |Zie|, |Zizt| − |Zie| ≤ |Zi(zt + e)|,
and St ⊂ Pt we have

max
t

P (∃e, ||e||2 ≤ ε s. t.

Pn
i=k+1 |Zi(zt + e)|Pk

i=1 |Zi(zt + e)| ≤ 1)

≤ max
t

P (∃e, (zt+e) ∈ Pt s. t.

Pn
i=k+1(|Zizt| − |Zie|)Pk

i=1(|Zizt| + |Zie|)
≤ 1)

≤ max
t

P (

Pn
i=k+1 |Zizt| − maxs

Pn
i=k+1 |Zie

s
t |)Pk

i=1 |Zizt| + maxs

Pk
i=1 |Zie

s
t |

≤ 1).

(12)

where the second inequality follows from the property that the

maximum of a convex function over a poly-tope is achieved at its

corner points. Connecting (9), (10), and (12) we obtain

Pf ≤
`

n
k

´
ε(n−m)

max
t

P (

Pn
i=k+1 |Zizt| − maxs

Pn
i=k+1 |Zie

s
t |)Pk

i=1 |Zizt| + maxs

Pk
i=1 |Zie

s
t |

≤ 1).

(13)

Using the union bound over s we further have

max
t

P (

Pn
i=k+1 |Zizt| − maxs

Pn
i=k+1 |Zie

s
t |Pk

i=1 |Zizt| + maxs

Pk
i=1 |Zie

s
t |

≤ 1)

≤ max
t

Nn−mX
s′=1

P (

Pn
i=k+1 |Zizt| − maxs

Pn
i=k+1 |Zie

s
t |Pk

i=1 |Zizt| +Pk
i=1 |Zie

s′
t | ≤ 1)

≤ max
t

Nn−mX
s′=1

Nn−mX
s′′=1

P (

Pn
i=k+1 |Zizt| −Pn

i=k+1 |Zie
s′′

t |Pk
i=1 |Zizt| +

Pk
i=1 |Zie

s′
t | ≤ 1).

(14)

Given that only the first component of zt is not equal to zero we

can write

max
t

Nn−mX
s′=1

Nn−mX
s′′=1

P (

Pn
i=k+1 |Zizt| −Pn

i=k+1 |Zie
s′′

t |Pk
i=1 |Zizt| +Pk

i=1 |Zie
s′
t | ≤ 1) ≤ N2(n−m)

× max
t,s′,s

′′

P

0
@
Pn

i=k+1

“
|Zi1(||zt||2 − |(es′

t )1|)| − |Pn−m
j=2 Zij(e

s′′

t )j |
”

Pk
i=1

“
|Zi1(||zt||2 + |(es′

t )1|)| + |Pn−m
j=2 Zij(es′

t )j |
” ≤ 1

1
A

(15)

where (es′

t )j and (es′′

t )j denote j-th components of es′

t and e
s′′

t ,

respectively. LetAi = Zi1(||zt||2+|(es′

t )1|),Bi =
Pn−m

j=2 Zij(e
s′

t )j ,

Ci = Zi1(||zt||2 − |(es′′

t )1|), and Di =
Pn−m

j=2 Zij(e
s′′

t )j .

Clearly, Ai, Bi, Ci, Di are independent zero-mean Gaussian ran-

dom variables. Furthermore it holds

var(Ai) = (||zt||2 + |(es′

t )1|)2, var(Bi) = ||es′

t ||22 − |(es′

t )1|2

var(Ci) = (||zt||2−|(es′′

t )1|)2, var(Di) = ||es′′

t ||22−|(es′′

t )1|2.
Then we can rewrite (15) as

max
t

Nn−mX
s′=1

Nn−mX
s′′=1

P (

Pn
i=k+1 |Zizt| −Pn

i=k+1 |Zie
s′′

t |Pk
i=1 |Zizt| +Pk

i=1 |Zie
s′
t | ≤ 1) ≤

(N2)n−m max
t,s′,s

′′

P

 
kX

i=1

(|Ai| + |Bi|) ≥
nX

i=k+1

(|Ci| − |Di|)
!

.

(16)

Let Ei, Fi, Gi, Hi be independent zero-mean Gaussian random

variables such that

var(Ei) = (1 + ε + ‖es′

t ‖)2, var(Fi) = ||es′

t ||22
var(Gi) = (1 − ε − ‖es′′

t ‖2)
2, var(Hi) = ||es′′

t ||22.
Since var(Ei) ≥ var(Ai), var(Fi) ≥ var(Bi), var(Gi) ≤ var(Ci),
and var(Hi) ≥ var(Di) we have from (16)

(N2)n−m max
t,s′,s

′′

P

 
kX

i=1

(|Ai| + |Bi|) ≥
nX

i=k+1

(|Ci| − |Di|)
!

≤ (N2)n−m max
t,s′,s

′′

P

 
kX

i=1

(|Ei| + |Fi|) ≥
nX

i=k+1

(|Gi| − |Hi|)
!

.

(17)
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Since ‖es′

t ‖2, ‖es′′

t ‖2, and (N2) don’t depend on t, s′ and s′′,

the outer maximization can be omitted. Furthermore, ‖es′

t ‖2 =

‖es′′

t ‖2 = cε. Using the Chernoff bound we further have

(N2)n−mP

 
kX

i=1

(|Ei| + |Fi|) ≥
nX

i=k+1

(|Gi| − |Hi|)
!

≤ (N2)n−m(Eeμ|E1|)k(Eeμ|F1|)k(Ee−μ|G1|)n−k(Eeμ|H1|)n−k.

(18)

where μ is a positive constant. Connecting (13)-(18) we have

Pf ≤
 

n

k

!„
N2

ε

«n−m

(Eeμ|E1|Eeμ|F1|)k

„
Ee−μ|G1|

(Eeμ|H1|)−1

«n−k

.

(19)

After setting k = βn, m = αn, and computing the expectations
in (19) we finally obtain

lim
n→∞

Pf ≤ lim
n→∞

ξn
(20)

where

ξ =
(N2/ε)(1−α)

eH(β)−μ2(cε)2/2

„
eμ2(1+ε+cε)2/2

„
erf

„
μ

1 + ε + cε√
2

«
+ 1

««β

×
„
erf

„
μcε√

2

«
+ 1

«„
eμ2(1−ε−cε)2/2

erfc

„
μ

1 − ε − cε√
2

««(1−β)

.

(21)

Now, for a given α we can determine numerically the largest β so
that there are μ ≥ 0, N , c, and 0 ≤ ε < 1 such that ξ < 1 and
limn→∞ Pf = 0 in (20). In fact using the well-known approxi-
mations of the erf and erfc functions it can be explicitly shown that

this can always be done. Since this is fairly obvious we omit the

derivation here. As a numerical example we say that for μ = 18,

ε = 0.011, N =
p√

2, c = 2.045, α = 0.5, β = 0.0016,
we have ξ = 0.99. This means that if we have n

2
measurements

we can recover by l1-optimization vectors x provided that they

have less than 0.0016n nonzero elements. Of course, the constant
0.0016 is not as good as the one from [1] 0.044708n. However, it
still shows that it is possible to recover signals x whose number of

nonzero elements grows linearly with n.
We summarize the previous results in the following theorem.

Theorem 2 Assume that we use (2) to solve (1). Further assume
that the matrix A in (1) has isotropically distributed null-space
and that the number of rows of the matrix A is m = αn. Then
it is possible to recover vector x in (1) provided that x has less
than βn nonzero components. α and β are absolute constants and
independent of n. Furthermore, for any given α the explicit value
of β can be numerically determined as a maximal value of β so
that the right hand side of (21) is less than 1.

Proof 2 Follows from the previous discussion.

4. CONCLUSION
We analyzed a null-space characterization of the necessary and

sufficient conditions for the success of the l1-norm optimization
in compressed sensing. Our analysis provided a somewhat new

technique in proving the optimality of the l1-norm optimization for
measurement matrices with isotropically distributed null-space.
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