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ABSTRACT

This paper presents a novel framework of fast and efficient com-
pressive sampling based on the new concept of structurally random
matrices. The proposed framework provides four important features.
(i) It is universal with a variety of sparse signals. (ii) The number of
measurements required for exact reconstruction is nearly optimal.
(iii) It has very low complexity and fast computation based on block
processing and linear filtering. (iv) It is developed on the provable
mathematical model from which we are able to quantify trade-offs
among streaming capability, computation/memory requirement and
quality of reconstruction. All currently existing methods only have
at most three out of these four highly desired features. Simulation
results with several interesting structurally random matrices under
various practical settings are also presented to verify the validity of
the theory as well as to illustrate the promising potential of the pro-
posed framework.

Index Terms— Fast compressive sampling, random projections,
nonlinear reconstruction, structurally random matrices

1. INTRODUCTION

In the compressive sampling framework [1], if the signal is com-
pressible, i.e., it has a sparse representation under some linear trans-
formation, a small number of random projections of that signal con-
tains sufficient information for exact reconstruction. The key com-
ponents of compressive sampling are the sensing matrix at the en-
coder that must be highly incoherent with the sparsifying transfor-
mation of the signal and a non-linear reconstruction algorithm at the
decoder such as basis pursuit, orthogonal matching pursuit (OMP),
iterative thresholding associated with projection onto convex sets
and their variants that attempt to find the sparsest signal from the
received measurements.

The first family of sensing matrices for l1 based reconstruction
algorithms consists of random Gaussian/Bernoulli matrices (or more
generally, sub-Gaussian random matrices [2]). Their main advantage
is that they are universally incoherent with any sparse signal and
thus, the number of compressed measurements required for exact
reconstruction is almost minimal. However, they inherently have two
major drawbacks in practical applications: huge memory buffering
for storage of matrix elements and high computational complexity
due to their completely unstructured nature [3].

The second family is partial Fourier [3] (or more generally,
random rows of any orthonormal matrix). Partial Fourier exploits
the fast computational property of Fast Fourier Transform (FFT)
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and thus, reduces significantly the complexity of a sampling sys-
tem. However, partial Fourier matrix is only incoherent with signals
which are sparse in the time domain, severely narrowing its scope of
applications. Recently, random filtering was proposed empirically
in [4] as a potential sampling method for fast low-cost compressed
sensing applications. Unfortunately, this method currently lacks
a theoretical foundation for quantifying and analyzing its perfor-
mance.

In this paper, we propose a novel framework of compressive
sampling for signals that can be sparse in any domain other than
time. Our approach is based on the new concept of structurally
random matrices. Here, we define a structurally random matrix as
an orthonormal matrix whose columns are permuted randomly or
the sign of its entries in each column are reversed simultaneously
with the same probability. A structurally random matrix inherently
possesses two key features: it is nearly incoherent with almost all
other orthonormal matrices (except the identity matrix and extremely
sparse matrices); it may be decomposed into elementwise product of
a fixed, structured and in many cases, block diagonal matrix with a
random permutation or Bernoulli vector.

Our algorithm first pre-randomizes the signal using one of these
two random vectors and then applies block transformation (or linear
filtering), followed by subsampling to obtain the compressed mea-
surements. At the decoder, the reconstruction algorithm uses cor-
responding adjoint operators, then proceeds to find the sparsest sig-
nal via the conventional l1-norm minimization decoding approach
of solving a linear programming problem or employing greedy algo-
rithms such as basis pursuit.

This approach may be regarded as the efficient hybrid model of
two current methods: completely random Gaussian/Bernoulli ma-
trices and partial Fourier. It retains almost all desirable features
of these aforementioned methods while simultaneously eliminates
or at least minimizes their significant drawbacks. A special case
of our method was mentioned of its efficiency in [5, 6] (as the so-
called Scrambled/Permuted FFT) but without an analysis of its per-
formance.

The remainder of the paper is organized as follow. Section 2
gives fundamental definitions and theoretical results of incoherence
of structurally random matrices. Section 3 presents theoretical re-
sults of compressive sampling performance based on the proposed
structurally random matrices. Simulation results are presented in
Section 4 and conclusions and future works are presented in Section
5. Due to lack of space, only heuristic arguments and proof sketches
are provided. Detail proofs of these theorems and associated lemmas
are provided in the journal version of this paper [7].
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2. COHERENCE OF STRUCTURALLY RANDOM
MATRICES

2.1. Basic Definitions

Definition 2.1.1: Given a unit-length vector x ∈ Rn and a random
seed vector π ∈ Rn, define a new random vector y as y = π(x).
We consider the following two models of π.

(i) Global randomization model: π is a uniformly random per-
mutation of the set {1, 2, ..., n}, assign y(π(i)) = x(i) for all
i = 1, .., n.

(ii) Local randomization model: π is a vector of i.i.d Bernoulli
random variables (p = 1/2), assign y = x ◦ π, where ◦ is the
element-wise product.
Definition 2.1.2: Given a fixed orthonormal seed matrix A ∈ Rn×n

and a random seed vector π ∈ Rn, a (row-based) structurally
random matrix is generated by applying one of two randomization
models in Definition 2.1.1 to all rows of the matrix A. Denote this
random matrix as π(A).

Lemma 2.1.1 Given a structurally random matrix π(A) ∈ Rn×n

and a fixed vector x ∈ Rn , π(A)x = Aπ(x).

The lemma above simply states that we can implement a fast
computation of a product of a structurally random matrix with a sig-
nal by first randomizing the signal using the random seed vector and
then applying fast transformation of the fixed seed matrix to the ran-
domized signal. This feature is, indeed, the spirit of our work.

2.2. Problem Formulation and Main Results

Given a structurally random matrix Φ ∈ Rn×n (whose subset
of rows is a sensing matrix) and some fixed orthonormal matrix
Ψ ∈ Rn×n (i.e. the sparsifying matrix) and assume that the average
support of rows of Φ is s, i.e. each row of Φ has s nonzero entries
on average. We are interested in the coherence of Φ and Ψ [3] w.r.t.
parameters n and s. The relationship of this coherence with minimal
number of measurements required for exact reconstruction in the
compressive sampling framework [3] is provided in Section 3.

Assumption 2.2.1: Our ultimate goal is to design the sensing
matrix Φ to be both simple and efficient. Thus, we would like to
consider the case that absolute nonzero entries of Φ are roughly
equal, i.e. they are in the order of O(1/

√
s). For the sake of sim-

plicity, these absolute values may be set freely to be 1/
√

s when
necessary. Note that this assumption does not violate the orthonor-
mality of Φ because there exists families of orthonormal matrices
whose all absolute nonzero entries are 1/

√
s, for example, a Kro-

necker product of a Hadamard matrix and an identity matrix.
Assumption 2.2.2: To prevent the degenerate case, i.e. Φ and

Ψ become identity matrices or extremely sparse matrices, we need
another reasonable assumption that the average row’s and column’s
supports of these matrices is at least log n – a quite realistic range
with known sparsifying matrices.

With the aforementioned assumptions, the following theorems
hold for structurally random matrices generated by the local ran-
domization model.

Theorem 2.2.1: The coherence of Φ and Ψ is not larger than
O(

√
log n/s) with probability at least 1 − O(1/n).

Theorem 2.2.2: The 2-Babel cumulative coherence [8] of Φ and
a uniformly random set of k columns of Ψ is not larger than

O(
√

k/n +
√

k log n3/2/s) with probability at least 1 − O(1/n).

In the case that the sensing matrix Φ is generated by a global
randomization model, the results are weaker because we need an
additional assumption on Φ and Ψ below. This is mainly due to our
method of approximating a random permutation vector by a weakly
dependent random vector.

Assumption 2.2.3: If Φ is generated by a global randomization
model, every column of Ψ has sum of its entries equals to zero. In
addition, we limit our consideration to the case when Ψ (Φ) is dense
and Φ (Ψ) has average row and column supports s to be in the order
of o(

√
n) (i.e. s/

√
n goes to zero when n goes to infinity).

Theorem 2.2.3: The theorems 2.2.1 and 2.2.2 also hold when Φ is
generated by a global randomization model and Assumption 2.2.3 is
satisfied.

Proof sketch:
The main technical tools are large deviation inequalities of sum of
independent random variables. In particular, the Bernstein’s and Ho-
effding’s concentration inequalities of sum of independent random
variables [9] are used very frequently. Key arguments are as follows.

(i) Of two models, the global randomization is harder to analyze
due to its combinatorial nature. We approximate it by the following
proposition which is proved by using Mutual Information to com-
pute the asymptotical distance between join probability and product
of marginal probability functions.

Proposition 2.2.1: If entries of a vector x ∈ Rn are distinct and
an integer s of the order of o(

√
n), the randomized vector y = π(x)

may be asymptotically approximated by the s-independent random
vector, i.e. entries of y are identical distributed random variables
and entries in every subgroup of size s are mutually independent.

(ii) The asymptotical behavior of the above theorems are de-
scribed by the following proposition.

Proposition 2.2.2: The normalized inner product of a dense row
of Φ and a dense column of Ψ is a random variable with zero-mean
and unit variance. In addition, it is asymptotically normal when n
goes to infinity.

(iii) To quantitatively measure the tail probability of coherence,
we use the following proposition which is directly derived from
Bernstein’s deviation inequality and a union bound for the supre-
mum of a random process.

Proposition 2.2.3 Let x1, x2, ...xn be a sequence of inde-
pendent, bounded, discrete random variables with zero-mean.
Let s =

∑
i xi ∈ S and its variance denoted by σ2. Also,

define M = supi |xi| and K=max(O(M2 log n), O(σ2)). If
the cardinality of S is n2, then λ = O(

√
K log n) satisfies

P (sups∈S |s| > λ) < O(1/n).
Theorem 2.2.1 is then the direct corollary of this proposition

under the assumptions 2.2.1 and 2.2.2. Notice that in this case, s is
the inner product of a row of Φ and a column of Ψ and assumption
2.2.2 implies the maximum absolute entries of Φ and Ψ are not
larger than

√
1/ log n.

Theorem 2.2.2 uses the main assumption that the subset of
k columns of Ψ are chosen uniformly randomly. Notice that in-
ner products of a row of Φ and these k random columns of Ψ
is the sequence of k independent random variables. In addition,
these random variables are upper-bounded as the result of Theorem
2.2.1. Define the probabilistic event that all these random variables
are upper-bounded by O(

√
log n/s). Applying the Hoeffding’s

concentration inequality for this sequence of independent random
variables and then the union bound for the supremum of a random
process and the conditional probability inequality to remove the
conditioned event results in Theorem 2.2.2.
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Theorem 2.2.3 uses the similar set of arguments of sum of in-
dependent random variables with the notice to Proposition 2.2.1 and
the additional assumption 2.2.3.

3. COMPRESSIVE SAMPLING USING STRUCTURALLY
RANDOM MATRICES

In the compressive sampling framework, the number of measure-
ments required for exact reconstruction are directly proportional to
the coherence of the sensing matrix and the sparsifying matrix [3].
If this coherence was large (i.e. these matrices were not incoherent),
compressive sampling loses its effectiveness and can even become
useless. However, the incoherence between a sensing matrix and
a sparsifying matrix is not sufficient to guarantee exact reconstruc-
tion. The other important condition is the stochastic independence
of compressed measurements. In subGaussian matrix framework
- a generalization of Gaussian/Bernoulli matrices, rows of the ran-
dom matrix are required to be stochastically independent. In partial
Fourier framework, a random subset of rows is used to generate
stochastic independence among these deterministic rows.

If Φ is a structurally random matrix, its rows are not stochas-
ticaly independent because they are randomized from the same
random seed vector and thus are correlated. This is the main dif-
ference between a structurally random matrix and a subGaussian
matrix. Relaxing the independence among its rows enables a struc-
turally random matrix to have some particular structure with fast
computation. The independence of compressed measurements is
then generated by using the same method of partial Fourier - a ran-
dom subset of rows of a structurally random matrix.

Assumption 3.2.1: Suppose that matrices Φ and Ψ satisfy our
assumptions 2.2.1, 2.2.2. If the global randomization model is used,
the additional weaker version of the assumption 2.2.3, i.e. every
column of Ψ, except at most one, has sum of its entries equals to
zero, is also required. Also, assume that the signal is k-sparse in the
domain Ψ and satisfies the condition of uniformly random sign as
in [3]. The concept of non-uniformly exact reconstruction as defined
in [3] is also used.

With the above assumption, the following theorems are about
the number of measurements required for exact reconstruction when
a structurally random matrix Φ is used to acquire compressed mea-
surements

Theorem 3.1: (Non-uniform exact reconstruction) A random subset
of compressed measurements of size m guarantees exact reconstruc-
tion with probability at least min{(1 − δ), 1 − O(1/n)}, provided
m = O((kn/s) log n log n/δ).

Theorem 3.2: (Non-uniform exact reconstruction for uniformly
sparse signals) If the signal is uniformly sparse, i.e. its nonzero en-
tries are uniformly randomly distributed in its sparse domain, a ran-
dom subset of compressed measurements of size m guarantees exact
reconstruction with probability at least min{(1− δ), 1−O(1/n)},

provided that m = O((k + (n/s)
√

k
√

log3n) log n/δ).

Theorem 3.2.1 implies that if the sensing matrix is dense (i.e.
s = n), the number of measurements is nearly minimal (except for
the log n factor), regardless of the sparsifying matrix Ψ. In general,
the number of measurements is linearly inverse-proportional to the
average sparsity of the sensing matrix. Theorem 3.2.2 shows a sig-
nificant improvement that this inverse-proportional relationship is,
indeed, sub-linear when k and s are in the order of O(

√
n), which

is usually the case.

Proof sketch:
The proof of these theorems follows a similar set of arguments

in [3] and the above results of coherence of a structurally random
matrix. First notice that the structurally random matrix is always
orthonormal. Its orthonormality is untouched by the global or local
randomization operators. Thus, the structually random matrix may
be considered as the deterministic orthonormal matrix under the set
of arguments in [3]. The innovating part is that the coherence of this
sensing matrix is explicitly specified by Theorems 2.2.1, 2.2.2 and
Theorem 2.2.3.

For Theorem 3.1: The main components of the proof are The-
orems 2.2.1, 2.2.2 and Theorem 1.1 in [3]. The technical tool used
is the conditional probability inequality. Define the probabilistic
event that the coherence of Φ and Ψ is not larger than

√
logn/s.

Theorem 2.2.1 says that this event occurs with probability at least
1 − O(1/n). After conditioning on this event, we apply the The-
orem 1.1 in [3] because all matrices are orthogonal. Applying the
conditional probability inequality to remove the conditioned event
results in Theorem 3.1.

For Theorem 3.2: This theorem exploits the concept of 2-Babel
cumulative coherence [8] to give a tighter bound of number of
measurements required for exact reconstruction when signals are
uniformly sparse. Let T be the index set (of size k) of nonzero
entries of the sparse signal and UT be the matrix of size n × k
corresponding to columns of the product matrix of Φ and Ψ indexed
by T . Let ui be row vectors of UT . As arguments in [3], the number
of measurements required for exact reconstruction is proportional to
max1≤i≤n ‖ ui ‖. A normal treatment is to approximate this term
by the coherence of Φ and Ψ and the Theorem 3.1 follows. However,
notice that if the nonzero entries of the sparse signal is uniformly
randomly distributed, this term may be better approximated by the 2-
Babel cumulative coherence between Φ and Ψ. Applying Theorem
2.2.2 for the upper bound of this cumulative coherence and using the
same technical tools of the conditional probability inequality and
a probabilistic event of upper bound of the cumulative coherence
results in the Theorem 3.2

4. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed frame-
work with other existing ones in large scale applications. Natural
images of size 512 × 512 are used as input signals of length 218.
The sparsifying operator Ψ is chosen as the popular Daubechies 9/7
wavelet transform. The l1 based linear programming solver is based
on the GPSR algorithm [10]. Figure 1 and Figure 2 illustrate the
PSNR results of reconstructed Lena and Boat images, respectively.

Our main interest here is the performance of highly sparse
sensing matrices. In this experiment, we choose block-diagonal
Hadamard and DCT matrices. Two sizes are considered: 32 × 32
and 512×512. Notice that the density rate of those sensing matrices
are only 2−13 and 2−9, which are highly sparse. The global and
local randomization models are used for 32 × 32 and 512 × 512
matrices, respectively. The method of random subset of measure-
ments is used to acquire compressed measurements. In Figure 1 and
Figure 2, DCT32 and Ha32 correspond to the results of 32 × 32
block-diagonal DCT and Hadamard matrices, respectively. Like-
wise, DCT512 and Ha512 represent the results of 512 × 512 DCT
and and Hadamard matrices, respectively. For comparison purposes,
we also implement other popular sampling operators. The first one
is the ”brute force (BF)” method, which transforms the signal into
its sparse representation and uses partial FFT (PFFT) to sample in
the transform domain. Since the FFT and the identity matrix are
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Fig. 1. Reconstruction results for 512 × 512 Lena image.
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Fig. 2. Reconstruction results for 512 × 512 Boat image.

perfectly incoherent, the brute force method seems to be powerful
in theory. However, it is often prohibited from practice because its
computation is too costly and it requires knowing the sparsifying
matrix at the encoder. In general, it is required that the system to be
able to sample signals without prior knowledge of their sparsifying
matrices. Other methods are also considered including the partial
Fourier and scrambled FFT (SFFT) [5, 6], a special case of our
proposed framework. The family of sub-Gaussian matrices such
as the Gaussian/Bernoulli is not studied here as it is impossible to
implement them in such a large scale experiment like this.

From Figure 1 and Figure 2, one can observe that the partial
Fourier operator is not the appropriate matrix for sensing smooth
signals as it is highly coherent with such signals. These figures
also depict that the performances of four proposed sensing matri-
ces, which are very sparse and require much lower computation and
memory buffering than all other methods, are roughly equal to those
of the most complicated, ”brute force” method. The difference is
only about 1dB which is a reasonable sacrifice. They are much sim-
pler and require much lower computation than the Scrambled FFT.
In addition, thanks to the streaming feature of the local random-
ization model, two matrices DCT512 and Ha512 can provide the
streaming capability for the sampling system effectively. These sim-
ulation results are, indeed, perfectly matched with our theoretical
results above.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel approach of fast compressive sampling is pro-
posed based on the new concept of structurally random matrices.
The essence of a structurally random sensing matrix is that it decou-
ples the properties of sub-Gaussian and stochastic independence of
rows of a sub-Gaussian matrix. The sub-Gaussian property of rows
is realized by random seed vector with appropriate distributions. The
stochastic independence property of rows is realized by a random
subset of rows as in the partial Fourier approach. Via decoupling,
the sensing ensemble can be implemented very efficiently with fast
integer computation and streaming capability.

The proposed framework may be regarded as an innovating mix-
ture of partial Fourier and sub-Gaussian matrices. It provides the
universality feature for partial Fourier by pre-randomizing signals
and the fast and efficient computation for sub-Gaussian matrices by
realizing the sub-Gaussian and the independence properties of rows
separately.

While the stochastic independence of compressed measure-
ments is one of sufficient conditions for exact reconstruction, the
highly incoherence between sensing matrices and signals is to guar-
antee the minimal number of measurements required. However, it is
still unknown whether or not stochastic independence of measure-
ments is necessary for optimal performance. In addition, how to
quantify this relationship between independence, incoherence and
performance is another interesting open problem. Our future works
will be in this direction.
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