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ABSTRACT

We develop a perfect reconstruction scheme from point-wise sub-
Nyquist rate samples for multi-band signals. Our approach is blind,
namely the knowledge of the band locations is not used in the de-
sign of either the sampling or the reconstruction stage. This is in
contrast to previous approaches to reconstruct this class of signals,
which required information about the spectral support at least in the
reconstruction stage. Our scheme guarantees exact recovery for a
wide class of multi-band signals without the use of heuristics or dis-
cretization methods.

Index Terms— Landau-Nyquist rate, multiband sampling,
nonuniform periodic sampling.

1. INTRODUCTION

We treat the problem of sampling and reconstructing a multi-band
signal, namely a bandlimited signal whose Fourier transform is sup-
ported on several distinct intervals. The case of known band loca-
tions was studied in the literature and it was shown that this struc-
ture enables perfect reconstruction from sub-Nyquist rate samples.
Landau [1] developed a minimal rate requirement for arbitrary sam-
pling methods allowing perfect reconstruction. For multi-band sig-
nals the Landau rate is the sum of the band widths. Lin and Vaidy-
nathan [2] introduced a perfect reconstruction method from periodic
non-uniform sampling at the Landau rate, assuming knowledge of
the band locations. Venkataramani and Bresler [3] suggested a half-
blind system: the sampling is based on a blind multi-coset scheme
whose design does not require the band locations. However, the re-
construction is performed using a non-blind filter-bank scheme re-
quiring knowledge of the spectral support.

In this paper, we study the problem of blind perfect reconstruc-
tion. We begin by exploring the theoretical minimal rate requirement
for blind reconstruction. It is shown that the minimal rate is higher
than the lower bound for known-spectrum reconstruction, namely
the Landau rate. This result is stated for arbitrary sampling and re-
construction and is based on a recent paper of Lu and Do [6].

The main contribution of this paper is the development of a
fully-blind system. For sampling we use a blind multi-coset strategy
satisfying the minimal rate requirement. This type of strategy was
also used in [3], however the reconstruction of [3] is not blind. In
order to reconstruct the signal, we develop theoretical results that en-
ables transforming the continuous nature of the reconstruction prob-
lem into a finite dimensional problem without any discretization. In
addition, we show that the solution of the finite dimensional problem
can be obtained by finding the unique sparsest solution matrix from
Multiple-Measurements-Vectors (MMV). Finding a sparsest solu-
tion matrix is discussed thoroughly in the literature of compressed
sensing (CS) [4]. The proposed reconstruction scheme is formalized

as a finite-step algorithm, and is proved to guarantee perfect recon-
struction for a wide class of multi-band signals.

Our work differs from other main stream CS papers by the fact
that the signals are treated in a continuous framework rather than a
discrete one. The transformation into a finite dimensional problem is
exact and does not involve any discretization technique. In addition,
we use a deterministic sampling procedure as opposed to the use of
random sampling operators in the CS literature. Thus, our theoreti-
cal results guarantee perfect reconstruction and do not condition this
behavior by any probability.

The advantage of this work is that the design of a fully spectrum-
blind sampling and reconstruction system can be done once and in
advance. The reconstruction can then be applied to a wide range of
multi-band signals differing in their band locations without the need
to adjust either part of the system. The low sampling rate reduces
the overall cost of such a system. Our method is therefore attractive
for a variety of applications, including cellular networks, magnetic
resonance imaging and military uses.

The paper is organized as follows. In Section 2 we detail the
reconstruction objectives, which are the class of multi-band signals
to be perfectly reconstructed, and the minimal rate requirement for
blind reconstruction. An overview of the multi-coset sampling is
given in Section 3. Conditions for blind prefect reconstruction using
this sampling strategy are discussed in Section 4, in which we also
present our reconstruction method. In Section 5 we describe numer-
ical experiments demonstrating blind sampling and reconstruction
using our approach.

2. RECONSTRUCTION OBJECTIVES

2.1. Multi-band signals class

We consider the class M of complex-valued multi-band signals ban-
dlimited to F = [0, 1/T ], so that 1/T is the Nyquist rate for signals
in M. In addition, the class M is assumed to contain multi-band
signals with no more than N bands and each of the band widths is
not greater than B. Note that the values of N and B are typically
known in advance, whereas the exact band locations is not assumed.

Our goal is to perfectly reconstruct x(t) ∈ M when both
sampling and reconstruction are required to be blind, which means
knowledge of the band locations cannot be used in their design. In
the next section, we study the minimal rate requirement for blind
perfect reconstruction.

2.2. Minimal rate requirement

Let R = {rn}∞n=−∞ be a countable set such that the sequence
xR[n] = x(t = rn) describes a point-wise sampling set for x(t).
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The corresponding average sampling rate is computed by the lower
Beurling density function

D−(R) = lim
r→∞

inf
y∈R

|R ∩ [y, y + r]|
r

. (1)

The numerator in the right hand side of (1) counts the number of
points from R in every interval of width r.

In known-spectrum reconstruction the Fourier transform X(f)
is restricted to a known support T ⊆ F . A stable sampling set R
requires the existence of constants α > 0 and β < ∞ such that:

α‖x(t) − y(t)‖2 ≤ ‖xR[n] − yR[n]‖2 ≤ β‖x(t) − y(t)‖2
(2)

is valid for all signals x(t), y(t) whose Fourier transform is sup-
ported on T . Landau [1] proved that a stable sampling set must
have a density D−(R) not less than the Landau rate, which is the
Lebesgue measure of T .

In blind-spectrum reconstruction we consider the set NΩ of sig-
nals bandlimited to F whose support measure is not greater than
Ω/T for some 0 < Ω < 1. Note that NΩ contains signals with
different support T and the exact spectral support of x(t) ∈ NΩ

is not known. We say that R is a blind stable sampling set if there
exists constants α > 0 and β < ∞ such that (2) is valid for every
x(t), y(t) ∈ NΩ. The following theorem states the minimal density
of a blind stable sampling set.

Theorem 1 (Minimal sampling rate) Let R be a blind sampling
set for NΩ. Then,

D−(R) ≥ min

{
2Ω

T
,

1

T

}
. (3)

We point out that the theorem does not provide a method to
achieve the lower bound. Nevertheless, for Ω > 0.5 the solution
is straightforward since sampling at the Nyquist rate achieves the
lower bound of Theorem 1. An ideal low-pass filter guarantees per-
fect reconstruction for this sampling set. Thus, the resulting system
is fully blind and perfectly reconstruct every x(t) ∈ M. However,
for Ω < 0.5 Theorem 1 suggests that perfect reconstruction is al-
lowed from samples at a sub-Nyquist rate. Throughout the paper,
we therefore focus on this case of Ω < 0.5.

The Landau rate for the set M is NB while the minimal rate for
blind reconstruction is 2NB according to Theorem 1. Our goal is
to develop a blind sampling and reconstruction scheme that does not
assume knowledge of the band locations, and results in a rate close
to the minimal rate.

3. SPECTRUM-BLIND SAMPLING

To sample the signal, we use the multi-coset blind technique pro-
posed in [3] with a certain choice of parameters. Multi-coset sam-
pling is a class of periodic non-uniform sampling in which the sam-
pling set is taken from the uniform grid x(t = nT ). The grid is
divided into blocks of L samples. A set C = {ci}p

i=1 describes the
locations of p out of L samples that are kept in each block while the
rest are ignored. The parameters L, p and the sampling pattern C
determine the multi-coset sampling set.

Define the ith sampling sequence for 1 ≤ i ≤ p as

xci [n] =

{
x(t = nT ) n = mL + ci, for some m ∈ Z

0 otherwise. (4)

Note that xci [n] is zero-padded by L−1 zeros between the non-zero
samples, thus the implementation of this sampling strategy is carried

out by p uniform sequences with period 1/(LT ). Evidently, the
average sampling rate is p/(LT ), which is lower than the Nyquist
rate for p < L.

A linear relation between the sampling sequences and the signal
exists in the frequency domain [3]

Xci(e
j2πfT ) =

1

LT

L−1∑
r=0

exp

(
j
2π

L
cir

)
X

(
f +

r

LT

)
, (5)

∀ f ∈ F0 =

[
0,

1

LT

)
, 1 ≤ i ≤ p,

where Xci(e
j2πfT ) is the discrete-time Fourier transform of xci [n].

Expressing (5) in a matrix form we have

y(f) = Ax(f), ∀f ∈ F0, (6)

where Xci(e
j2πfT ) is the ith entry of the vector y(f), and x(f)

contains L unknowns for each f

xi(f) = X

(
f +

i

LT

)
, 0 ≤ i ≤ L − 1, f ∈ F0. (7)

The matrix A depends on the parameters L, p and the sampling pat-
tern C but not on x(t) and is defined by

Aik =
1

LT
exp

(
j
2π

L
cik

)
. (8)

A sampling pattern C is called universal if every set of p
columns of A is linearly independent [3]. Universal patterns are
an essential element of both known and blind reconstruction since
they result in the largest class of signals that can be perfectly recon-
structed [3],[7]. Finding a universal pattern involves a combinatorial
process which can be avoided for the following specific selections:
The bunched pattern C = {0, 1, ..., p − 1} is proved to be universal
[3]. Alternatively, choosing L to be prime renders every pattern
universal [5].

Using the multi-coset strategy, our goal is to select the parameter
L, p and a universal pattern C such that x(f) can be recovered from
(6) for every f ∈ F0.

4. SPECTRUM-BLIND RECONSTRUCTION

The linear system of (6) is undetermined since for every f ∈ F0

there are less equations than unknowns, so that the matrix A is non-
invertible. In addition, the solution x(f) typically does not belong
to the null-orthogonal subspace of A, which means it cannot be re-
covered by multiplying both sides of (6) by the pseudo-inverse A†.
Therefore, determining x(f) from (6) requires some prior knowl-
edge. In our case, a multi-band signal has a special structure in the
frequency domain: Its Fourier transform is zero outside the bands
support. We use this characterization as a prior for solving (6). The
following theorem expresses this prior in terms of the vector x(f).
Specifically, it provides a parameters selection that ensures x(f) is
N sparse, namely it contains no more than N non-zero values for
every f ∈ F0.

Theorem 2 Let x(t) ∈ M be a multi-band signal. If

1. L ≤ 1/(BT ),

2. p ≥ 2N ,

3. C is a universal pattern,
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then, for every f ∈ F0, the vector x(f) is N -sparse and x(f) is the
unique sparsest solution of (6).

The sparsity of x(f), as noted in Theorem 2, results from the
sparse structure in the frequency domain and the specific parame-
ters selection. Evidently, perfect reconstruction is possible under the
conditions of Theorem 2. Note that the number of non-zero entries
in x(f) is no more than N while the length of y(f) is p ≥ 2N . The
origin of this factor of two comes from the following well known CS
result for an arbitrary vector y and an arbitrary matrix A.

Theorem 3 Suppose x̄ is a solution of y = Ax. If x̄ is K-sparse
and every set of 2K columns of A is linearly independent, then x̄ is
the unique sparsest solution of the system.

The requirement for a universal pattern in Theorem 2 provides
the linear independency of every set of p columns in A. According
to Theorem 2, x(f) is N -sparse, which explains the limitation p ≥
2N . As explained in Section 3, the average sampling rate of the
multi-coset strategy is p/(LT ). Thus, the limitation of L ≤ 1/(BT )
and p ≥ 2N implies an average sampling rate of at least 2NB,
which satisfies the minimal rate requirement of Theorem 1.

The literature of CS suggests several techniques for finding the
sparsest solution of a linear system. Theorem 2 guarantees that x(f)
is the unique sparsest solution, thus a straightforward approach is to
apply any of these methods on a dense grid of f ∈ F0. However,
a discretization of this kind cannot guarantee perfect reconstruction
of x(f) for every f ∈ F0. Instead, we propose an exact recovery of
x(f) by first finding the finite set

S = {k |xk(f) 
= 0, for some f ∈ F0}. (9)

It is easy to see that (6) can be written as

y(f) = AS xS(f), (10)

where AS is a sub-matrix of A containing only the columns whose
indices belong to S. Similarly, xS(f) is a vector of length |S| that
consists of the entries of x(f) in the locations described by S. It
can be proved that under the conditions of Theorem 2, the pseudo-
inverse of AS satisfies

(AS)†AS = I, (11)

which results in

xS(f)= (AS)†y(f), ∀f ∈ F0. (12)

In addition, from (9)

xi(f) = 0, ∀f ∈ F0, i /∈ S. (13)

Thus, once S is known perfect reconstruction is obtained by (12)-
(13).

In order to find the set S the following operations are performed.
First, we compute the p × p matrix

Q =

∫ 1
LT

0

y(f)yH(f)df, (14)

where yH(f) denotes the conjugate transpose of y(f). Since Q is
positive semi-definite, it can be decomposed as

Q = VVH
(15)

Algorithm 1 SBR

Input: y(f), Assume: The conditions of Theorem 4
Output: the set S, flag

1: Compute the matrix Q by (14) or by (17)
2: Decompose Q = VVH

3: Solve the MMV system V = AU for the sparsest solution U0

4: S = { the locations of non-identically zero rows of U0 }
5: flag = {|S| ≤ p

2
}

6: return S, flag

with V having r orthogonal columns, where r = rank(Q). Note
that this decomposition is not unique. We then define the finite di-
mensional linear system

V = AU. (16)

Finally, we seek the sparsest L× r solution matrix of (16), namely a
matrix U0 solving (16) that has a minimal number of non-identical
zero rows. The following theorem states conditions that ensures the
desired set S is equal to the locations of the non-zero rows of U0.

Theorem 4 Let x(t) ∈ M be a multi-band signal. If:
1. L ≤ 1/(BT ),
2. p ≥ 4N ,
3. C is a universal pattern,

then, for every choice of decomposition in (15), the system (16) has
a unique sparsest solution U0. Moreover, the set S defined in (9)
is the set of non-identical zero rows of U0 regardless of the specific
selection of V in (15).

Theorem 4 is very powerful since it allows us to replace the con-
tinuous reconstruction problem with a finite dimensional one. In
the CS literature, the linear system of (16) is referred to as Mutli-
Measurement vectors (MMV). Finding the sparsest solution U0 of
an MMV system is known to be NP-hard. Theorem 4 guarantees per-
fect reconstruction for every x(t) ∈ M as long as U0 is recovered
correctly. To implement our method in practice, we suggest using
sub-optimal efficient techniques from the CS literature to solve the
MMV system (16). Several of these methods are given in [4].

The formal reconstruction steps are summarized in Algorithm 1,
named SBR. The SBR algorithm also contains a flag variable report-
ing the success recovery of S in case a sub-optimal MMV technique
is used. A failure indication means that the specific MMV approach
used has failed and another one can be employed.

We note that Q can be computed directly from the sample se-
quences x̂ci [n] = x(nLT + ciT ):

Qik =
∑
m∈Z

x̂ci [m](x̂ck ∗ gik)[m], (17)

where gik are the set of digital filters

gik[m] =

∫ 1
LT

0

exp (j2πf(mL + (ck − ci))T ) df. (18)

The requirement p ≥ 4N of Theorem 4 is more constrained
than p ≥ 2N of Theorem 2. Consequently, using the extreme values
allowed for L, p by Theorem 4 yields an average sampling rate of
at least 4NB, which is twice the minimal required by Theorem 1.
This increased rate is a drawback of the SBR algorithm, as accord-
ing to Theorem 2 perfect reconstruction using multi-coset samples
is also possible at the minimal rate. Our work in [7] provides a more
complex version of the SBR algorithm that accomplishes perfect re-
construction and requires the minimal sampling rate.
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5. NUMERICAL EXPERIMENTS

In this section we quantify the behavior of algorithm SBR when a
sub-optimal technique is used to solve the MMV system. We con-
sider an example of the class M with F = [0, 20 GHz], N = 4
and B = 100 MHz. In ordet to test the algorithm 1000 multi-band
signals from this class were constructed such that each signal has
exactly N bands and each of the band width is exactly B. Thus, the
support measure of each signal is NB = 400 MHz. The bands were
located uniformly at random on F and the complex values of X(f)
inside the bands were randomly generated from a normal distribu-
tion.

We constructed 29 different multi-coset stages with the follow-
ing parameters. A prime value L = 199 is common in all the sys-
tems. The value of p varied from 4 to 32, and for each value of p
the sampling pattern C was selected randomly among

(
L
p

)
choices.

Since L is prime, the pattern C is guaranteed to be universal. We
conducted the experiments by sampling the signals by each one of
these multi-coset systems. Then, we reconstructed the signals by the
SBR algorithm, where the multi-orthogonal matching pursuit tech-
nique [4] was used to solve the MMV. The empirical success rate
is calculated as the ratio of signals in which the correct solution was
found. Note that if the flag variable indicates a failure, then we could
have used another MMV technique to reconstruct the signal. How-
ever, since solving MMV is not our main focus here, we preferred to
use only one technique. The results are depicted in Fig. 1.
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Fig. 1. Performance of the SBR Algorithm for signals x(t) ∈ M.

The sampling rate for p = 4N = 16 is p/(LT ) = 1608 MHz,
which is slightly more than twice the minimal rate. Indeed, Fig. 1
shows that a high recovery is accomplished for p ≥ 16 as ensured
by Theorem 4. As expected, for p < 8 the signals could not be re-
covered since the average sampling rate does not satisfy the minimal
requirement of Theorem 1.

To emphasize the exact recovery of the SBR algorithm, one of
the tested signals is compared with its reconstructed version using
p = 16. Fig. 2 plots the spectral support of both the original and
the reconstructed signal. Fig. 3 presents both signals on a segment
of the time domain. As seen, perfect reconstruction is accomplished.
In fact, there is nothing special in the random distributions we used
to construct the set of signals for this experiment. Perfect recon-
struction occurs for other choices as well since our method assumes
neither the exact signal support nor it the exact values of the Fourier
transform.
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Fig. 2. (a) Original and (b) reconstructed signal spectrum.
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Fig. 3. (a) Original and (b) reconstructed signal in time domain.
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