RECONSTRUCTING SPARSE SIGNALS FROM THEIR ZERO CROSSINGS

Petros T. Boufounos and Richard G. Baraniuk

Rice University, ECE Department

ABSTRACT

Classical sampling records the signal level at pre-determined time
instances, usually uniformly spaced. An alternative implicit sam-
pling model is to record the timing of pre-determined level crossings.
Thus the signal dictates the sampling times but not the sampling lev-
els. Logan’s theorem provides sufficient conditions for a signal to
be recoverable, within a scaling factor, from only the timing of its
zero crossings. Unfortunately, recovery from noisy observations of
the timings is not robust and usually fails to reproduce the original
signal. To make the reconstruction robust this paper introduces the
additional assumption that the signal is sparse in some basis. We re-
formulate the reconstruction problem as a minimization of a sparsity
inducing cost function on the unit sphere and provide an algorithm
to compute the solution. While the problem is not convex, simula-
tion studies indicate that the algorithm converges in typical cases and
produces the correct solution with very high probability.

Index Terms— Level-crossing problems, implicit sampling, sparse

reconstruction

1. INTRODUCTION

Classical signal acquisition systems usually sample signals at speci-
fied time instances and acquire the value of the signal amplitude. The
defining characteristic of such systems is that the sampling times are
in general signal-independent. Most acquisition systems sample uni-
formly in time or use a non-uniform but periodic sampling pattern.
Both cases are well established theoretically and in practical imple-
mentations.

In contrast, in the case of sampling using level crossings—also
referred to as implicit sampling—the signal dictates the sampling
times. Specifically, the sampling device continuously compares the
amplitude of the signal to pre-determined discrete levels and records
the time of each level crossing together with the amplitude of the
level crossed and, often, the direction of the crossing [1]. In such a
scheme, the signal dictates the timing of the samples, but not the am-
plitude of the levels acquired. Although subsequent digital process-
ing usually implies that the timing information is also discretized, re-
cent work has developed hardware to perform analog-time, discrete-
amplitude processing triggered by such level crossings (for exam-
ples, see [2, 3] and the references within).

Signal acquisition from level crossings is appealing, especially
in cases in which the amplitude of a signal cannot be accurately mea-
sured but can be compared to a few, predefined levels. For example,
a hardware implementation of a sampling system that detects the
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timing of zeros crossings is extremely simple since it only requires
a simple comparator and an accurate timer. Furthermore, the timing
of the level crossings can be a parsimonious signal representation for
certain signal classes, as compared with uniform sampling [4, 5].

Despite its potential appeal in hardware design and signal rep-
resentation, the problem has not, to date, been theoretically charac-
terized in the general case. The most significant result is Logan’s
theorem [6], which states sufficient conditions for the zero crossings
to uniquely represent the signal. However, a more general result on
the recovery of a one-dimensional signal from the timings of arbi-
trary level crossings has remained elusive, despite significant results
on multidimensional signals [7].

Unfortunately, recovery of the signal from the level crossing in-
formation is not always robust to sampling noise and timing quan-
tization. Logan’s theorem provides no robustness guarantee for the
reconstruction performance. Indeed, practical algorithms are either
unstable, or require the measurement of additional information on
the signal to stabilize the representation [1,8,9]. This paper ad-
dresses this problem. Our approach is to stabilize the reconstruction
by assuming the signal is sparse in some basis.

Recent results in signal acquisition, processing, and represen-
tation demonstrate that several classes of interesting signals can be
sparsely represented in some basis. This information is used, for ex-
ample, to compressively sample and reconstruct [10, 11] or denoise
a signal [12]. The assumption of sparsity serves as a prior model
to guide the signal reconstruction method and select the signal that
is sparsest in the chosen basis among all the possible reconstruction
candidates. The ability of the sparsity prior to describe signals and
guide the reconstruction process is what makes it a good candidate
to stabilize the reconstruction of signals from their zero crossings.

The goal of this paper is to provide a new formulation for the
problem of reconstructing the signal from the timing of its zero cross-
ings under the assumption that the acquired signal is sparse in some
basis and to demonstrate experimentally that under this formulation
it is possible to reconstruct the sparse signal with very high probabil-
ity. Specifically, we assume the signal is sparse in the Fourier basis.
Under this assumption it is possible to formulate the reconstruction
problem as an optimization constrained on the unit sphere. Although
the reconstruction is a non-convex problem, we present a simple al-
gorithm that converges experimentally to the global optimum with
high probability and, as verified by our experimental results, recov-
ers the signal. Even though the algorithm works well in practice, the
focus of this paper is neither on the efficiency of the algorithm nor on
theoretical guarantees on its performance. Instead, the emphasis is
on the new formulation and its applicability in signal recovery. Note
that sparsity in the Fourier basis is not necessary; it is straightforward
to modify the algorithm to use any basis of interest.

Sections 2.1 and 2.2 present an overview of implicit sampling
and sparse signal recovery, respectively. They establish the nota-
tion and serve as a quick reference for the remainder of the paper.
Section 3.1 uses the sparsity prior to reformulate the problem as an
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optimization constrained on the unit sphere. An algorithm to solve
the new formulation is introduced in Sec. 3.2, where it is also argued
that it converges to the global optimum with very high probability.
Section 4 provides experimental results that verify this claim and
some discussion on future directions.

2. BACKGROUND

2.1. Signal Recovery From Zero Crossings

The recovery of a one-dimensional (1-D) signal from its zero cross-
ings has not been fully explored to date. In [6] it is shown that the
zero crossings of a real bandpass signal uniquely determine the sig-
nal within a scalar factor as long as its bandwidth is restricted to
[B,2B — €| for any 0 < € < B. A practical algorithm, based on
the singular value decomposition (SVD), is developed in [9] but, as
the authors acknowledge, it often fails to correctly reconstruct the
signal. Although we follow their initial development closely, we re-
formulate the problem to exploit the assumption of sparsity, and we
provide an algorithm that uses repeated random initializations to en-
sure that it recovers the signal with high probability.

Logan’s theorem [6] applies to infinite dimensional spaces, but
in this paper we restrict our attention to finite dimensional spaces
of periodic bandpass signals. Under this assumption, the Fourier
series coefficients are sufficient to represent the signal. Without loss
of generality, we assume the signal has unit period, and therefore
it contains only harmonic frequencies of the form f, = 27n, for
n € Z,B/27 < n < B/w. Thus

z(t) = Z an cos(2mnt) 4 by sin(2mnt), (1)
neB
where B = {[B/2r],...,|B/7]} = {n1,...,ny/2} denote the
indices of the Fourier Series coefficients a,, and b,, sufficient to rep-
resent the signal, and N = 2| B /27| denotes the total number of
those coefficients. For the remainder of this paper, we use x € RY
to denote the vector of coefficients a,, and b,,. Note that the ordering
of a,, and b,, in x is not important, as long as it is consistent with all
the other vectors and operators introduced later. Assuming an order-
ing of the cosine coefficients followed by the sine coefficients, the
signal at time ¢ satisfies:

x(t) = <¢tvx>7 (2)

where ¢; is the measurement vector at time ¢:

or = [ cos (2mnit) cos (27rnN/2t)

sin (27rnN/2t) ]T. 3)

Using Logan’s theorem on this signal model, it follows that the
zero crossings over a single signal period are sufficient to represent
the signal and, therefore, the coefficients in x. Denoting the set of
zero crossings using 7 = {tx € [0,1),k=1,...,Z}:

(X, bt +1) = x(ti +1) =0, forallty, € Tandl € Z, (4)

with Z denoting the number of zero crossings of the signal in the
period [0, 1). Any set of Z time instances, tx, k = 1, ..., Z defines
a sampling operator ® 4, } for all signals in the model:

sin (27nt)

‘:I){tk_}(x) = [:C(tl),...,x(tz)]T, %)
which is the matrix that transforms x € R” to a vector in RZ:
By =60 S (6)

In contrast to classical sampling systems the ®7 is signal dependent
and defined by the zero crossings of the sampled signal.
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The sampled signal lies in the nullspace null(®7). It follows
from Logan’s theorem that ®7 has rank NV — 1 and that its nullspace
has dimension exactly equal to 1. Recovering any non-zero vector in
this nullspace reconstructs x within a scalar factor, which cannot be
identified since x:(¢;) = 0 implies that cx(t) = 0 for all constants c.
In principle, the 1-D nullspace can be identified using any nullspace
identification method, such as the SVD suggested in [9].

Unfortunately the reconstruction is not robust to perturbations
in the recorded timing of the zeros crossings. Given a set of noisy
measurements of the zero crossings {¢x }, there is no guarantee that
a bandpass signal with such zero crossings exists or, if it does, that it
is close in some meaningful sense to the original signal. Experimen-
tal results demonstrate that the lack of such guarantees makes re-
construction difficult and unreliable. Specifically, errors in the mea-
surement of the zero crossings set 7, due to measurement noise or
quantization of the timings, usually make the resulting sampling op-
erator @7 full rank. Thus, a one-dimensional null-space cannot be
immediately recovered.

One approach to resolve this issue is to use the SVD to decom-
pose the domain of ®7 into singular vectors and then use the vector
corresponding to the smallest singular value as the reconstructed sig-
nal. In practice, however, this method is very sensitive to measure-
ment noise and quantization. Experimental results demonstrate that
®7 has a number of small singular values with similar magnitude
and the sampled signal is not always reconstructed using the singu-
lar vector corresponding to the smallest one. Although the signal of
interest does lie in the space spanned by the vectors corresponding
to the few smallest singular values, it is difficult to identify a single
vector in the space to represent the signal. To guide the reconstruc-
tion we propose an extra constraint on the signal of interest, namely
that it is sparse in some basis.

2.2. Sparse Signal Recovery

Recent advances in signal theory have demonstrated that the class of
sparse signals is a good signal model for several kinds of interest-
ing signals, often encountered in communications, radar, and image
processing applications. The assumption in such a model is that the
signal, when expressed in some sparsifying basis or dictionary, has
very few significant coefficients, and the remaining ones are zero or
approximately zero. For example, communications signals are often
sparse in the short-time Fourier domain, and radar signals are sparse
in the chirplet domain.

Specifically, a vector x is sparse in some basis if its basis expan-
sion has a small ¢,-norm, for p < 1. The £,-norm (technically a
pseudonorm if p < 1) of a vector is defined as:

1l = (Z I(X)il’”>

where (-); denotes the i*" coefficient of the vector. For p = 0, the
norm is defined as the number of nonzero coefficients, and is equal
to the limit of ||x|[|} as p tends to 0.

The assumption of sparsity has proven very useful for resolv-
ing ambiguities in signal reconstruction. In most practical cases it is
necessary to allow for some deviation, in an /> sense, from the mea-
surements or the signal to accommodate measurement noise. For
example, in signal denoising applications, the noisy signal implicitly
defines a set of signals that are close in the /5 sense. The denoised
signal is the one in this set that is the sparsest when expressed in an
appropriate dictionary [12]. Similarly, in compressive sensing ap-
plications, the compressive sensing measurements define an affine

p

,p>0, (7



subspace in which the sampled signal may lie. The signal chosen by
the reconstruction algorithm is the one with the sparsest representa-
tion in some basis that is close to the measurements [10, 11].

The general formulation of these problems often takes the form
of an optimization that balances the sparsity of the signal with the
deviation from the measurements, such as:

~ i A
x:argm}:n\|x\|§+§||¢’X*y||§7 (®)

where y is the data (for example, the noisy signal or the compressive
measurements), ® is the usually signal-independent sparsity dictio-
nary, and x is the sparse representation of the signal. The parameter
) balances the sparsity of the solution with the fidelity to the data.
Although the o norm is a strict measure of the signal sparsity, the ¢,
norm is often used in practice in (8) because it is continuous, convex
and easy to optimize. In certain cases, depending on @, the solu-
tion of (8) for any 0 < p < 1 has the same sparsity structure as
for p = 0 [13, 14]. This minimization has been well studied, with
a variety of algorithms to solve it (for some examples, see [15] and
references within). For the remainder of this paper we focus on the
case of p = 1, although the development in subsequent sections can
be immediately generalized to any 0 < p < 1.

3. SPARSE RECOVERY FROM ZERO CROSSINGS

3.1. Sparsity on the Unit Sphere

Although sparsity is a very effective model to resolve reconstruc-
tion ambiguities, the application of this model to the problem of re-
construction from zero crossings is not straightforward. A sparsity
model on the reconstruction from the zero crossings can be imposed
using the minimization in (8) with the signal-dependent sampling
operator ®7, as defined in (6) and setting the data vector to y = 0.
Unfortunately, in this case the optimal solution is x = 0. This is due
to the ambiguity of resolving x only within a scalar multiple of itself
inherent in the problem formulation. Thus, we impose the additional
constraint that the solution has unit energy, i.e., [|x|2 = 1:

~ . A
x =argmin [x|h + 5[ @7x[3, st flxla =1 (9

The constraint in (9) places the solution on the surface of the
unit sphere in R — a non-convex set. Thus, any convergence guar-
antees due to the convexity of the cost function in (8) do not hold for
the solution of (9). Note that as A tends to infinity, the optimum tends
to the singular vector corresponding to the smallest singular value.
Furthermore, as A tends to 0O the solution tends to a vector x with a
single non-zero component at the location corresponding to the col-
umn of &7 with the smallest norm.! In that sense, the problem is
parallel to the overdetermined case of (8): as A tends to infinity X
converges to the least-squares solution X = ®'y, where ()7 de-
notes the pseudoinverse. Similarly as A tends to zero, (8) converges
tox = 0.

The use of the /5 norm of ®+x as a measure of closeness to
the samples seems reasonable and is also justified experimentally.
Specifically, our preliminary experiments, not presented here due to
space limitations, demonstrate that the empirical distribution of the
signal amplitude at the quantized time of the zero crossing is close to
a Gaussian with variance that decreases as the quantization becomes
finer. The weight A in (9) should also be set inversely proportional
to the square root of this variance.

I This solution is reached only as the limit of the solution path as ) tends
to zero. If the problem is solved with A = 0, the solution can be any vector
that has a single non-zero component in any location.
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Algorithm 1 Renormalized Fixed Point Iteration

1. Initialize:
Xpest < argminy [|@7x||2, s.t. |[x[2 =1

2. Seed Inner Iteration:
%o <« random vector € RV s.t. ||Xo|2 = 1,
k<0

(a) Inner Loop Counter:
k—k+1
(b) /2 Gradient:
gr — PTPrxK_1
(¢) /2 Gradient Projection on Sphere Surface:
gk — 8k — (k> Xk—1)Xk—1
(d) ¢2 Gradient Descent:
h «— X,_1 — 08k
(e) Shrinkage:
(u); < sgn ((h),) max {| (h), | — $,0}, forall 4,
(f) Normalization:
xi —u/|ull
(g) Inner Iteration: Repeat from (a) until convergence.

3. Update Best Estimate:
If (%]l < [|[Xpest] 1> Se Xpest Xk

4. Outer Loop: Repeat from 2, L times.

3.2. Renormalized Fixed Point Iteration

One of the simplest approaches to solve (9) is to modify an exist-
ing iterative algorithm that solves (8) such that the solution is con-
strained by the algorithm to be on a sphere. Since the constraint is
not convex, convergence to the global minimum is not guaranteed.
However, the experimental results in Sec. 4 demonstrate that global
convergence can be achieved in practice with very high probability.

This paper presents four modifications to the fixed point algo-
rithm described in [15]. First, the constraint that the solution has
unit norm is enforced by re-normalizing the estimate after each it-
eration. Second, the gradient descent step is modified such that the
gradient is followed only in a direction tangent to the sphere. Third,
since speed of convergence is not a primary concern of this paper,
the continuation strategy discussed in [15] is not applied. Fourth, to
combat the non-convexity of the search space, the algorithm is en-
closed in an outer loop that performs several trials, each initialized
with a new random seed. Algorithm 1 summarizes the modifications.

The outer loop of the algorithm seeds the inner iteration loop
randomly and keeps track of the result with the smallest ¢; norm.
Since the search space is not convex, the inner loop is not guaran-
teed to converge to the global minimum. However, if each trial ini-
tialized with a new random seed converges to the global minimum
with positive probability P, then it follows that the probability that
at least one of the L trials produce the global minimum approaches
1 exponentially fast as a function of L:

Polobal =1 — (1 = Pt (10)

The experimental results in Sec. 4 demonstrate that this is indeed
often the case in practice. The outer loop is initialized in Step 1
using the smallest singular vector. This initialization can also be
used as the seed for one of the trials in the inner loop.

The inner iteration loop follows [15] closely. Step (a) keeps
track of the iteration counter in the inner loop. Step (b) computes
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Fig. 1. Success rate after L iterations (a) if all L iterations are ran-
domly initialized and (b) if (L — 1) iterations are randomly initial-
ized while one is initialized using the SVD . The solid line plots the
performance of the SVD method [9].

the gradient of H<I>7—XH§ /2 at the current solution estimate Xj—1.
Step (c¢) projects that gradient along the surface of the unit sphere
by removing the component of the gradient parallel to the current
solution estimate. That step is not necessary since the solution esti-
mate is renormalized at the end of each iteration, but our experiments
demonstrated that it improves the global convergence properties of
the algorithm. Step (d) performs a gradient descent along the pro-
jected gradient and stores the result temporarily in h. The descent
step size is . Step (e) performs a shrinkage operation on h and
stores the result temporarily in u. The shrinkage, as described in
[15], can be considered as a gradient descent with step size 0 along
the ||x||1/A part of the cost function. Step (f) normalizes the result
to have unit power and the current solution estimate is updated. Fi-
nally, Step (g) compares the new solution to the previous one and
declares the algorithm converged or iterates from Step (a).

4. RESULTS AND DISCUSSION

This section presents experimental results for signal recovery from
zero crossings using Alg. 1. In the experiments we set | B/27| =
128, i.e., N = 256. The timing information in 7 is represented us-
ing 20 bits per zero crossing, with each value rounded towards 1 dur-
ing quantization. To generate the sparse vector x, a set of K random
frequencies are selected, for which the sine and the cosine Fourier
coefficients are populated with values drawn from a normal distri-
bution; the remaining coefficients are set to 0. The resulting vector,
which has sparsity 2K /N, is subsequently normalized to have unit
magnitude and transformed to the time domain to determine its zero
crossings. These are used in Alg. 1 to recover the signal.

As the algorithm is executed the number of successes is recorded,
where success is defined as recovering the signal with a signal-to-
noise ratio of more than 20dB. The experiments are executed with
L = 1,5,10, and 20. For each value of K we execute 500 experi-
ments for a total of 10000 iterations of the inner loop. The results are
reported in Fig. 1, in which we report the probability of recovering
the signal within the first L iterations of the inner loop.

Figure 1(a) demonstrates the performance of the algorithm when
all trials are seeded randomly, using vectors with coefficients drawn
from an i.i.d. Bernoulli =1 distribution, normalized to be on the unit
sphere. As predicted by (10) increasing L improves the performance
of the algorithm. As the signal becomes less sparse (larger 2K /N),
the sparsity model does not accurately describe it, and the perfor-
mance deteriorates. As the signal becomes more sparse (smaller
2K /N) the algorithm on average encounters more cases with only
low frequencies and therefore fewer zero crossings. The reconstruc-
tion of these signals is more difficult, which is reflected in the perfor-

mance. Note that setting L = 75 in our experiments was sufficient
to always recover the signal.

A simple modification of the algorithm uses the singular vector
corresponding to the smallest singular value to seed one of the tri-
als, and seeds the remaining (L — 1) trials randomly, as above. The
results from this modification are reported in Fig. 1(b). For com-
parison we also plot the results using the SVD method in [9]. It is
evident from the figure that this modification significantly improves
the probability that the algorithm converges in few iterations, espe-
cially as K increases and the SVD method provided better initial
estimates.

In summary, formulating the problem of sparse signal recon-
struction from zero crossings as a sparsity inducing optimization on
the unit sphere stabilizes the reconstruction. This formulation can
be extended beyond Fourier sparsity to accommodate other sparsity
bases by appropriately modifying the sampling operator ® 7, but the
performance of such a modification needs to be evaluated. Further-
more, although the algorithm described provides the solution with
high empirical probability, further research on reconstruction algo-
rithms and their performance is necessary.
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