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ABSTRACT

Compressed sensing allows perfect recovery of sparse signals
(or signals sparse in some basis) using only a small number
of measurements. The results in the literature have focused
on the asymptotics of how many samples are required and the
probability of making an error for a fixed batch of samples.
We investigate an alternative scenario where observations are
available in sequence and can be stopped as soon as there is
reasonable certainty of correct reconstruction. This approach
does not require knowing how sparse is the signal, and allows
reconstruction using the smallest number of samples.
Central to our sequential approach is the stopping rule.

For the random Gaussian ensemble we show that a simple
stopping rule gives the absolute minimum number of observa-
tions required for exact recovery, with probability one. How-
ever, for other ensembles like Bernoulli or Fourier, this is no
longer true, and the rule is modified to trade off delay in stop-
ping and probability of error. We also consider near-sparse
signals and describe how to estimate the reconstruction error
from the sequence of solutions. This enables stopping once
the error falls below a desired tolerance. Our sequential ap-
proach to compressed sensing involves a sequence of linear
programs, and we outline how such a sequence can be solved
efficiently.

Index Terms— Sequential compressed sensing

1. INTRODUCTION

In compressed sensing (CS) a few random linear measure-
ments of a signal are taken, and the signal is recovered using
sparse representation algorithms such as the �1-based basis
pursuit [1]. This is most useful when the cost of taking mea-
surements is much larger than the computational overhead of
recovering the signal, hence minimizing the number of re-
quired measurements is a primary concern. Existing analyt-
ical results provide guidelines on how many measurements
are needed to ensure exact recovery with high probability, but
these are often seen to be pessimistic [1, 2] and rely on a-
priori knowledge about the sparsity of the unknown signal.
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We consider an alternative scenario where one is able to get
observations in sequence, and perform computations in be-
tween observations to decide whether enough samples have
been obtained. Exact recovery is now possible from the small-
est possible number of observations, and without any a-priori
knowledge about how sparse the underlying signal is.
This, however, requires a computationally efficient de-

coder which can detect exactly when enough samples have
been received. We first consider the case when noiseless mea-
surements are taken using the random Gaussian ensemble,
and we show that simply checking for one-step agreement
yields such a decoder. AfterM samples the decoder1 solves

x̂M = arg min ||x||1 s.t. a′
ix = yi, i = 1, ..,M (1)

In case of one-step agreement, i.e. x̂M+1 = x̂M , the decoder
declares x̂M to be the reconstruction and stops requesting new
measurements. In Section 2 we show that this decoder gives
exact reconstruction with probability one.
For some other measurement ensembles, such as random

Bernoulli and the ensemble of random rows from a Fourier
basis, the one-step agreement stopping rule no longer has zero
probability of error. We modify the rule to wait until T sub-
sequent solutions x̂M , ..., x̂M+T all agree. In Section 3 we
show that in the Bernoulli case the probability of making an
error using this stopping rule decays exponentially with T ,
allowing trade-off of error probability and delay.
In Section 4 we show how the error in reconstruction can

be estimated from the sequence of recovered solutions. This
enables the decoder to stop once the error is below a required
tolerance – even for signals that are not exactly sparse, but in
which the energy is largely concentrated in a few components.
Finally, we propose an efficient way to solve the sequen-

tial problem in Section 5. Rather than re-solving the linear
program from scratch after an additional measurement is re-
ceived, we use an augmented linear program that uses the
solution at step M to guide its search for the new solution.
We show empirically that this approach significantly reduces
computational complexity.

1Here we use the basis pursuit decoder, but our results apply to any sparse
decoder, e.g. brute-force decoder and greedy matching pursuit.

33571-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



AM
x = y1:M

x̂
M

x
∗

aT

M+1x = yM+1

Fig. 1. A new constraint is added: a′
M+1x = yM+1. Prob-

ability that this hyperplane passing through x∗ also passes
through x̂M is zero.

2. STOPPING RULE IN THE GAUSSIAN CASE

We now analyze the sequential CS approach with the Gaus-
sian measurement ensemble. Suppose that the underlying
sparse signal x∗ ∈ R

N has K non-zero components (we de-
note the number of non-zero entries in x by ‖x‖0). We se-
quentially receive random measurements yi = a′

i
x∗, where

ai ∼ N (0, I) is a N -vector of i.i.d. Gaussian samples. At
stepM we solve the basis-pursuit problem in (1) using all the
received data. Results in compressed sensing [1, 2] indicate
that after receiving around M ∝ K log(N) measurements,
solving (1) recovers the signal x∗ with high probability. This
requires the knowledge ofK, which may not be available, and
only rough bounds on the scaling constants are known. Our
approach is different - we compare the solutions at step M
andM + 1, and if they agree, we declare correct recovery.

Proposition 1 If x̂M+1 = x̂M in the Gaussian measurement
ensemble, then x̂M = x∗, with probability 1.

Proof. Let y1:M � [y1, ..., yM ]′, andAM � [a1, ...,aM ]′.
Suppose that x̂M �= x∗. We have that y1:M = AM x̂M and
y1:M = AMx∗: both x∗ and x̂M belong to the (N − M)-
dimensional affine space {x | y1:M = AMx}. The next
measurement passes a random hyperplane yM+1 = a′

M+1x
∗

through x∗ and reduces the dimension of the affine subspace
of feasible solutions by 1. In order for x̂M to remain feasible
at stepM +1, it must hold that yM+1 = a′

M+1x̂
M . Since we

also have yM+1 = a′
M+1x

∗, then x̂M remains feasible only
if (x̂M−x∗)′aM+1 = 0, i.e. if aM+1 falls in theN−1 dimen-
sional subspace of R

N corresponding to Null((x̂M − x∗)′).
As aM+1 is random and independent of x̂M and of the previ-
ous samples a1, ..., aM , the probability that this happens is 0
(event with measure zero). See Figure 1 for illustration. �

Clearly, if we obtain x̂M = x∗, then the solution will not
change with additional samples: x∗ is always in the feasible
set, and the feasible set is shrinking with each new sample. In
the Gaussian case the stopping rule can be simplified further:
if x̂M has fewer thanM non-zero entries, then x̂M = x∗.
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Fig. 2. Gaussian ensemble example: N = 100, and K = 10.
(Top): ‖x̂M‖0. (Middle): ‖x̂M‖1. (Bottom): ‖x∗ − x̂M‖2.

Proposition 2 If ‖x̂M‖0 < M , then x̂M = x∗ with prob. 12.

Proof. Let A = AM to simplify notation. Then A is
M × N , withM < N . The key fact about random Gaussian
matrices is that any M × M submatrix of A is non-singular
with probability 13. Let I be the support of x∗, i.e. I =
{i | x∗

i
�= 0}. Suppose that there is another sparse feasible

vector x̂ �= x∗ with support J , such that |J | < M . There are
two possibilities: I ⊂ J and I �= I ∩ J . We show that in
both cases x̂ �= x∗ can occur only with probability zero.
First suppose I ⊂ J . Then x̂ − x∗ ∈ Null(A), and

support of x̂−x∗ is a subset of J , hence it is smaller thanM .
But that means that fewer than M columns of A are linearly
dependent, which only happens with probability zero.
Now consider the case I �= I ∩J . First fix some such set

J . We use the notation I\J = { i ∈ I | i /∈ J}. The prob-
ability that the vector ỹ = AI\Jx∗

I\J falls into span(AJ )

is zero, as |J | < M and the elements of AI\J are indepen-
dent of AJ and x∗. The number of such possible subsets J
is finite (albeit large), so the event that ỹ falls into span of any
such AJ still has probability zero. Hence, with probability 1
there is only one solution with ‖x‖0 < M , namely x∗. �

Consider an example in Figure 2 withN = 100, andK =
10. We keep solving (1) until agreement, x̂M = x̂M+1. The
top plot shows that ‖x̂M‖0 increases linearly with M until
M = 35, at which point it drops to K = 10 and we have
x̂M = x∗. The middle plot shows the monotonic increase in
‖x̂M‖1 (as the feasible set is shrinking withM ). The bottom
plot shows the error-norm of the solution, ‖x̂M − x∗‖2. On
average it tends to go down with more observations, but non-
monotonically. AfterM = 35 the error becomes zero.

2Note that a random measurement model is essential: for a fixed matrix
A if 2K > M then there exist x1 and x2 such that Ax1 = Ax2 and
‖xi‖0 ≤ K. However, for a fixed x

∗ with ‖x∗‖0 < M the probability that
it will have ambiguous sparse solutions for a random choice of A is zero.

3This is easy to see: fix T ⊂ {1, ..., N}with |T | = M . Then probability
that ATM

∈ span(AT1
, ..., ATM−1

) is zero, as ATM
is a random vector

in R
M and the remaining columns span a lower-dimensional subspace.
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3. STOPPING RULE IN THE BERNOULLI CASE

Now suppose that the measurement vectors ai have equiprob-
able i.i.d. Bernoulli entries ±1. A difference emerges from
the Gaussian case: the probability that all M × M subma-
trices of AM are non-singular is no longer 0. This makes it
possible (with non-zero probability) for x̂M+1 to agree with
x̂M when x̂M �= x∗, and for erroneous solutions x̂M to have
cardinality less than M . We modify the stopping rule to re-
quire agreement for several steps - success is declared only
when last T solutions all agree. We show in proposition 3
that the probability of error decays exponentially with T . We
use the following Lemma from [3]:

Lemma 1 Let a be an i.i.d. equiprobable Bernoulli vector
with a ∈ {−1, 1}N . LetW be a deterministic d-dimensional
subspace of RN , 0 ≤ d < N . Then P (a ∈ W ) ≤ 2d−N .

We are now ready to establish the following claim:

Proposition 3 Consider the Bernoulli measurement case. If
x̂M = x̂M+1 = ... = x̂M+T , then x̂M = x∗ with probability
greater than or equal to 1 − 2−T .

Proof. Suppose that x̂M �= x∗. Denote the support of
x∗ by I and the support of x̂M by J . At step M we have
AMx∗ = AM x̂M . LetW = {a | (x̂M − x∗)′a = 0}, i.e. the
nullspace of (x̂M −x∗)′. ThenW is an (N −1)-dimensional
subspace of R

N .
Given a new random Bernoulli sample aM+1, the vec-

tor x̂M can remain feasible at step M + 1 only if (x̂M −
x∗)′ aM+1 = 0, i.e. if aM+1 falls into W . By Lemma 1,
the probability that aM+1 ∈ W is a most 1/2. The same
argument applies to all subsequent samples of aM+i for i =
1, .., T , so the probability of having T -step agreement with an
incorrect solution is bounded above by 2−T . �

We now pursue an alternative heuristic analysis, more akin
to Proposition 2. For the Bernoulli case, ‖x̂M‖0 < M does
not imply x̂M = x∗. However, we believe that if N221−M


 1, then x̂M = x∗ with high probability. Since the elements
of ai belong to finite set {−1, 1}, anM×M submatrix ofAM

can be singular with non-zero probability. Surprisingly, char-
acterizing this probability is a very hard question. It is conjec-
tured [3] that the dominant source of singularity is the event
that two columns or two rows are equal or opposite in sign.
This leads to the following estimate (hereXM isM × M ):4

P (det XM = 0) = (1 + o(1))M221−M (2)

However the very recent best provable bound on this probabil-
ity is still rather far: P (det XM = 0) = ((3

4 +o(1))M ) [3]. If
we assume that the simple estimate based on pairs of columns
is accurate, similar analysis shows that the probability that a
random ±1 M ×N matrix withM 
 N having allM ×M
submatrices non-singular is (1 + o(1))N221−M .

4Probability that two columns are equal or opposite in sign is 21−M , and
there are O(M2) pairs of columns.

4. NEAR-SPARSE SIGNALS

In practical settings, e.g. when taking Fourier and wavelet
transforms of smooth signals, we may only have approximate
sparseness: a few values are large, and most are very small.
The stopping rule from Section 2 is vacuous for near-sparse
signals, as ‖x∗‖0 = N and all samples are needed for perfect
recovery. We consider Gaussian measurements AM for this
section, and show that the reconstruction error satisfies

‖x∗ − x̂M‖2 ≤ CT ‖x̂
M − x̂M+T ‖2 (3)

where CT is a random variable. We characterize E[CT ] and
V ar[CT ] – this gives us a confidence interval on the recon-
struction error using the observed change ‖x̂M − x̂M+T ‖2.
We can now stop taking new measurements once the error
falls below a desired tolerance. Note that our analysis does
not assume a model of decay, and bounds the reconstruction
error by comparing subsequent solutions. In contrast, related
results in CS literature assume a power-law decay of entries
of x∗ (upon sorting) and show that with roughly O(K log N)
samples, x̂M in (1) will have similar error to that of keeping
theK largest entries in x∗ [1].
We now outline the analysis in (3). Consider Figure 1

again. Solution x̂M+T lies on the hyperplaneHM+T � {x | yi =
a′

i
x, i = 1, ..,M + T}. Let θT be the angle between the

line connecting x∗ with x̂M , and HM+T . Denote distance to
HM+T by d(x̂M ,HM+T ). Then

d(x∗, x̂M ) =
d(x̂M ,HM+T )

sin(θT )
≤

d(x̂M+T , x̂M )

sin(θT )
(4)

θT is a random variable - the angle between a fixed vector in
R

N−M and a randomN − (M +T ) dimensional hyperplane.
The constant CT in (3) is equal to 1

sin(θT ) . We next analyze
the distribution of θT and hence of CT .
Let L = N − M . In the Gaussian case (due to invariance

to orthogonal transformations) it is equivalent to consider the
angle θ between a fixed (L − T )-dimensional subspace H
and a random vector h in R

L. Let H be the span of the last
L − T coordinate vectors, and h be i.i.d. Gaussian. Then:
CT = 1

sin(θ) =
√∑L

i=1 x2
i

/
√∑T

i=1 x2
i
.

Using the properties of χL, χ2
L
, and inverse-χ2

L
distribu-

tions [4] and Jensen’s inequality, we have E[CT ] ≈
√

L

T
, and

an upper bound on the variance:5

V ar [CT ] ≤
L − 2

T − 2
−

L

T
(5)

In Figure 3 (left) we plot the mean estimate and the stan-
dard deviation bound for L = 100 and a range of T . We com-
pare them to sample mean and standard deviation ofCT based

5Consider E[sin(θ)2] =
“P

T

i=1 x2
i

”
/‖x‖2

2. We have E[
x
2
i

‖x‖2
2

] = 1
L

(Dirichlet dist.), so E[sin(θ)2] = T

L
. Using Jensen’s ineq. with

p
1/x,

E[1/ sin(θ)] ≥
q

L

T
. Finally, E[ 1

sin(θ)2
] = L−2

T−2
(for T > 2).
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Fig. 3. (Top left) Mean estimate and (bottom left) standard
deviation bound of CT vs. averages over 2500 samples.
L = 100. (Top right): Estimated and actual errors: power-law
decay, and (bottom right) blocky signals. N = 80, T = 3.

on 2500 samples. They give very good approximation for
most of the range of T > 2. Standard deviation quickly falls
off with T , giving tight confidence intervals (by Chebyshev
ineq. p(|a−E[a]| ≥ kσa) ≤ 1

k2 ). On the right plots we show
that predicted errors (Chebyshev-bounds) follow closely the
actual errors for certain near-sparse signals.

5. EFFICIENT SEQUENTIAL SOLUTION

The main motivation for the sequential approach is to reduce
the number of measurements to as few as possible. Yet, we
would also like to keep the computational complexity of the
sequential approach low. Instead of re-solving the linear pro-
gram (1) after each new sample, we would like to use the solu-
tion to the previous problem to guide the current problem. We
now investigate a linear programming approach to accomplish
this. In related work, [5] proposed to use Row-action methods
for compressed sensing, which rely on a quadratic program-
ming formulation equivalent to (1) and can take advantage of
sequential measurements.
We can not use the solution x̂M directly as a starting point

for the new problem at stepM + 1, because in general it will
not be feasible. In the Gaussian measurement case, unless
x̂M = x∗, the new constraint a′

M+1x̂
M = yM+1 will be vi-

olated. One way to handle this is through a dual formulation,
but we instead use an augmented primal formulation [6].
First, to model (1) as a linear program we use the standard

trick: define x+
i

= max(xi, 0), x−
i

= max(−xi, 0), and x =
x+ − x−. This gives a linear program in standard form:

min1′x+ + 1′x− (6)

y1:M =
[
AM − AM

] [
x

+

x
−

]
, and x+,x− ≥ 0

Next we need to add an extra constraint yM+1 = a′
M+1x

+−
a′

M+1x
−. Suppose that a′

M+1x̂
M > yM+1. We add an extra

slack variable z to the linear program, and a high positive cost
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Fig. 4. A comparison of the number of simplex iterations
when solving (1) from scratch (LP1) and using the solution at
stepM − 1 (LP2). Plot shows # iter. vs. M , over 100 trials.

Q on z. This gives the following linear program:

min1′x+ + 1′x− + Qz (7)

y1:M =
[
AM − AM

] [
x

+

x
−

]
, and x+,x− ≥ 0

yM+1 = a′
M+1x

+ − a′
M+1x

− − z, and z ≥ 0

Now using x̂M and z = a′
M+1(x̂

M )+ − a′
M+1(x̂

M )− −
yM+1 yields a basic feasible solution to this augmented prob-
lem. By selecting Q large enough, z will be removed from
the optimal basis (i.e. z is set to 0), and the solutions to this
problem and the (M +1)-th sequential problem are the same.
We test the approach on an example with N = 200, K =

10, and 100 trials. In Figure 4 we plot the number of itera-
tions of the simplex method required to solve the problem (1)
at stepM from scratch (LP1) and using the formulation in (7)
(LP2). To solve (6) we first have to find a basic feasible solu-
tion (phase 1) and then move from it to the optimal BFS. An
important advantage of (7) is that we start with a basic feasi-
ble solution, so phase 1 is not required. The figure illustrates
that for largeM the approach LP2 is significantly faster.

6. REFERENCES

[1] E. J. Candes, “Compressive sampling,” in Proc. Int.
Congress of Math., 2006, Madrid, Spain.

[2] M. Rudelson and R. Vershynin, “Sparse reconstruction by
convex relaxation: Fourier and Gaussian measurements,”
in CISS 2006, 2006.

[3] T. Tao and V. Vu, “On the singularity probability of ran-
dom Bernoulli matrices,” Journal Amer. Math. Soc., vol.
20, pp. 603–628, 2007.

[4] S. Kotz, N. Balakrishnan, and N. L. Johnson, Continuous
Multivariate Distributions, Wiley and Sons, 2000.

[5] S. Sra and J. A. Tropp, “Row-action methods for com-
pressed sensing,” in ICASSP, 2006, vol. 3, pp. 868–871.

[6] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear
optimization, Athena Scientific, 1997.

3360


