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ABSTRACT

This paper proposes a new similarity measurement based on Jump
Function Komogorov (JFK) and presents its application for audio
content analysis. This is done by means of comparing JFK, a sto-
chastic representation which is (a) additive, so a sum of sources
yields a sum of JFK’s, and (b) sparse, so the signal and noise are
better separated in the JFK domain. The properties of JFK make
it more robust than the probability density function when comparing
the signal distributions. In the application, we use the JFK in wavelet
domain for the audio stream segmentation and classification. The ex-
perimental results show that the proposed method is comparable to
the conventional methods under normal condition but significantly
outperformed them under miss-match conditions.

Index Terms— Similarity measurement, Jump Function Ko-
mogorov, Estimation, Segmentation, Classification.

1. INTRODUCTION

Multimedia content analysis is an important research direction with
a wide list of possible applications in entertainment, health care, sur-
veillance and security. Recently, as a counterpart of visual informa-
tion, audio content analysis has been paid more attention due to its
semantic discrimination capacity. Audio stream segmentation and
classification are two major subjects of audio content analysis and
in both cases the probability density function (PDF) is the main in-
strument that was used in the conventional approaches [1]-[3]. Par-
ticularly, for the segmentation, the Kullback-Leiber distance (KLD)
derived from Gaussian distribution is used in [2] and for the classi-
fication the GMM/HMM are the most popular classifiers [1],[3]. A
serious problem of using PDF instrument is that it become convo-
lutive in the presence of noise and therefore is very sensitive to the
change of noise conditions. The conventional methods are presently
not effective in the low-SNR or miss-match conditions. To address
this problem, many robust feature extraction and/or noise reduction
method has been proposed, many of them were successfully imple-
mented in certain conditions. However, in general, the robustness
issue is remained as a significant problem for speech/audio signal
segmentation and classification.

In this paper we shall discuss a different direction in the high
level of the robust signal classification: developing a robust similar-
ity measurement. In contrast to the PDF-driven measurements such
as KLD or like-lihood, here we introduce the distance based on Jump
Function Komogorov (JFK): a new stochastic representation, which
is (a) additive, so a sum of sources yields a sum of JFK’s, and (b)
sparse, so different sources will have non-overlapping supports in
the JFK representation. The similarity measurement based on Jump
Function Komogorov is robust under noisy conditions as the noise
subspace can be removed from the JFK representations.

In the application, we implement the proposed measurement for
the audio content analysis. Unlike the conventional methods where
the analysis is mainly done in the MFCC domain, here we analyze
the JFK in the wavelet domain by adopting a wavelet filter set.

For the segmentation, the possibility of the environment change
is justified by the JFK distance (JFKD) between left and right
sub-windows. The skip point can thus be defined by thresholding
the measured JKFD. In the experiment, we compare the proposed
method to the method based on KLD [2].

For the classification, we estimate the JFK in each wavelet sub-
band and compare the estimated JFKs to the trained references. To
eliminate effects of the noise, a confident interval of JFK is applied.
This interval is estimated in the training phase using a clean database
and then being used in the test for the calculation of the JFK distance.
We compare the proposed classification method to the method based
on GMM classifier in the MFCC domain. To test the robustness
of methods, we perform the test in both clean and noisy conditions
while the reference models are trained only in the clean one.

The experimental results show the significant superiority of the
JFK-driven compared to the PDF-driven approaches in the miss-
match noisy conditions.

The organization of the rest of the paper is as follows. In Sec.2
we will introduce the Jump Function Komogorov, its properties and
the estimation method. In Sec.3 we will then describe the proposed
JFK-driven method for the audio stream segmentation and classifica-
tion. Sec. 4 will report and discuss the experimental results. Finally,
in Sec.5 we will summarized the work.

2. JUMP FUNCTION KOMOGOROV

2.1. Definition of Jump Function Komogorov

Let consider a fundamental problem of the distribution of the sum
of two random variables which can be understood as realizations of
signal and noise [4]

Y = X + N. (1)
The PDF of the sum becomes a convolution

pY (z) = pX (z) ∗ pN (z) , (2)

which would totally changed its form from the original one. How-
ever, the multiplication is satisfied in the characteristic function rep-
resentation

fY (u) = fX (u) fN (u) . (3)
This becomes additive after taking logarithm

log [fY (u)] = log [fX (u)] + log [fN (u)] , (4)

and further differentiation,

log [fY (u)](n) = log [fX (u)](n) + log [fN (u)](n) , (5)
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where g(n) (.) denotes the n-order derivative.
Assume that there exist the Fourier transform of the n-order

derivative of the logarithm of characteristic function

k
[n]
(.) (x) =

∞�

−∞

log
�
f(.) (u)

�(n)
exp (−iux) du, (6)

this transform should return the additivity in real function space
noted by

k
[n]

(Y ) (z) = k
[n]

(X) (z) + k
[n]

(N) (z) . (7)
The function in (7) could be used as stochastic representation and it
would be more suitable for the additive model of signal and noise.

The question is when does the Fourier integral (6) exist (i.e.
when does it return a real function)? Fortunately, A.N. Komogorov,
one of greatest mathematician of 20-century , had proved an impor-
tant theorem [5] as follows

Theorem: Characteristic function of any finite-variance distrib-
ution can be presented in a canonical form noted by

fξ(u) = exp

��
�iumξ +

∞�

−∞

(eiux − 1 − iux)
dKξ(x)

x2

��
	 , (8)

where fξ (u) = E
�
eiuξ

�
is the characteristic function of ξ, mξ -

the expectation, and Kξ(x) is the Jump Function Komogorov (JFK)
which is an increasing and bounded function satisfying the following
inequality

0 ≤ Kξ (x) ≤ σ2
ξ (t) , (9)

Noted that here E[.] denotes the expectation operator.
From (8), after taking logarithm and differentiation, it can be

seen that Fourier transform (6) exists for the second order derivative
of the logarithm of characteristic function. We denote it as follows

kξ (x) =

∞�
−∞

∂2 ln [fξ (u)]

∂2u
exp (−iux)du, (10)

where kξ (x) is the density of Kξ(x). Since this function will be
used more than the original JFK, for an convenience, hereafter we
apply the terminology JFK for the jump density function .

2.2. Advantage of JFK: Linearity and Sparsity

From (9), it can be seen that the JFK has the same mathemati-
cal properties as the PDF: this is non-negative and its integral is
bounded. However, for the additive model, the advantages of JFK
over PDF are its linearity and sparsity properties what make this
representation better separable under noise conditions.

2.2.1. Linearity

The proof of the linearity of JFK can be seen from (1)-(7) and can
be formulated in a general form as follows: Assuming the observed
signal as a superposition of independent components

X =

L

i=1

Xi, (11)

the JFK ofX is then a superposition of the JFK of each component.

kX (x) =

L

i=1

kX
i
(x) (12)

2.2.2. Sparsity

One more important property of JFK is that many distributions have
sparse representations in this domain. Two below examples show
how the JFK map from Gaussian and Poisson distributions to the
delta-functions.

Remark 1: The JFK map from Gaussian distribution to a delta
function

kω (x) = σ2δ (x) . (13)
It can be seen that the JFK of the Gaussian noise is located at only
zero-point in the horizontal axis and therefore is easy to remove.

Remark 2: The JFK maps from Poisson distribution to another
delta function

kπ (x) = Λδ (x − 1.) (14)
In sections 4, we will show that the separability of speech and

noise in the JFK domain is useful to improve the robustness of the
signal classification.

2.3. Estimation of JFK

In this paragraph we turn our attention to the JFK estimation from
observation. In this paper, we estimate JFK through empirical char-
acteristic function, which is driven from observations.

2.3.1. Estimation of characteristic function

The empirical characteristic function is estimated as follows,

f(u) =
1

N

N

k=1

ei uxk , (15)

where xk : k = 1 : N are observations of a stochastic signalX(t).
Here after we prove the unbias and consistency of this estima-

tion.
Unbias: The expectation of the estimation (15) yields the true

characteristic function.

E{f(u)} = E

�
1

N

N�
k=1

eiuxk

�
=

1

N

N�
k=1

E
�

eiuxk

�
= f(u)

(16)
Consistency: Now we investigate the variance of the estimation

D
�
f(u)

�
= E

�
f(u)f(−u)

�− |f(u)|2 . (17)

The first component in the right side can be expressed by

E
�
f(u)f(−u)

�
= 1

N2 + 1
N2

N�
k, s = 1
k �= s

E
�
eiuxk eiuxs

�
.

(18)
Assuming the independence of observations yields

M
�
f(u)f(−u)

�
=

1

N2
+

N2 − N

N2
|f(u)|2 . (19)

Substituting (19) into (17) yields a constrain for the variance of em-
pirical characteristic function as follows

D
�
f(u)

�
=

1 − |f(u)|2
N

≤ 1

N
(20)

From (20) it can be seen that the estimation error is negligible when
the number of samples is large enough.
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Fig. 1. Example of estimated JFK in a wavelet subband of 1) babble
noise; 2) clean speech; 3)5-dB noisy speech

2.3.2. JFK estimation

According to (10), the JFK is Fourier transform of the 2rd-order
derivative of the logarithm of characteristic function. Similar to the
empirical characteristic function, this derivative can be estimated di-
rectly from observations. For our approach, where the JFK is esti-
mated for the audio signal in the wavelet domain, it is reasonable to
suppose that the observations have zero-mean and symmetric PDF
and therefore the imagination part of the characteristic function can
be ignored. The empirical characteristic function in this case can be
denoted as

f̂ (u) =
1

N

N�
k=1

cos (uxk). (21)

The second derivative of logarithm of characteristic function is thus
estimated by

∂2 [log (f)]

∂2u
= −

N�
k=1

x2
k cos (uxk)

N�
k=1

cos (uxk)

−

�
���

N�
k=1

xk sin (uxk)

N�
k=1

cos (uxk)

�
���

2

.

(22)
The JFK is estimated by inverse Fourier transform of (22). In this
work, the method based on FFT was implemented [6]. Note that as
the JFK should be a real function the imaginary part of the estimation
is ignored.

3. AUDIO CONTENT ANALYSIS BASED ON JUMP
FUNCTION KOMOGOROV

In this section we describe how the JFK can be applied for the audio
audio stream segmentation and classification. The flowchart of the
processing is as follows. In the first level, the continuously recorded
audio stream is segmented into audio clips according to the change
of some statistical properties. Then each audio clip is classified into
classes by adopting some classifier in feature domain. The reference
models should be trained priorly.

Up to present, the main instrument used in both the segmenta-
tion and classification are mainly driven from the probability density
function (PDF). For the segmentation, the KL distance or the his-
togram distance are more frequently used. For the classification,
the likelihood measurement with GMM/HMM modeling is the most
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Fig. 2. Example of setting confident interval of subband JFK

popular method. Unlike the conventional methods, our approach is
based on the Jump Function Komogorov. Below we will describe
the processing in details.

3.1. JFK analysis in the wavelet domain

In contrast to the conventional method, where the cepstral domain
(MFCC) is used, here we apply the JFK analysis in the wavelet do-
main. The audio signal is filtered by a set of wavelet filters. Par-
ticularly, a system based on Gabor filters located in Mel-frequency
centers were used in our experiment. The JFK is estimated just from
the filtered waveform in each subband. Given the visual property of
the sound signals, this is reasonable to assume that the distribution
of waveform in each subband wavelet domain follows is zero-mean
and symmetric, so that the characteristic function and JFK can be
estimated by the estimations described in Sec.2. Fig.1 shows an ex-
ample of estimated subband JFK of clean speech, babble noise and
simulated noisy speech at 5dB SNR. The sampling frequency in this
example is 8kHz and the band is 4th from the 24-band Gabor-Mel
band. It can be seen that the distribution of signal and noise are
different and their JFKs are separable in JFK representation.

3.2. Segmentation based on JFK

For the segmentation, we processes stream by applying sliding win-
dows, consisting of two-side sub-windows. For each sliding window,
we estimate JFKs of two sub-window and the Euclidean distance be-
tween estimated JFks is used as a similarity measurement to justify
the possibility of environment change in the particular window. The
skip point is thus detected by thresholding the average JFK distance
calculated over wavelet subbands.

3.3. Classification based on JFK

For the classification, for each class we first train the wavelet sub-
band JFKs using a training database. The training is carried out in
clean condition. In the test, the Euclidean distance between the JFKs
estimated from the testing audio clip to the reference models are use
to classify the clip. The simple nearest-neighbour principle is used
to make the decision.

To improve the robustness of the classification, a confident in-
terval of JFK is set from the training phase in order to avoid the
invasion of the noise representation in the test. In this work, we set
this interval as horizontal projections of 70% of the maximum value
to both left and right sides. An example of JFK of noisy signal and
its confident interval is shown in Fig.2. It can be seen that the noise
invasion in JFK can be reduced using this confident interval.
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Table 1. Overall classification accuracy in percentage [%]
Methods Clean 10-dB SNR 5-dB SNR
MFCC-GMM 92.22 52.27 22.35
Wavelet-JFK 91.19 86.67 80.56

4. EXPERIMENT

In this section we report the results evaluated from an audio stream
segmentation/classification experiment. This task is a part of our
project of CCTV for surveillance in public environment.

4.1. Data collection and reference methods

In the first stage of the project we are interested in real time detection
of possibly aggressive sounds. The segmentation and classification
of 8 classes of audio sounds including of normal speech, breaking,
explosion, cry, baby cry, knock, laugh and scream are investigated
in this work. We record a 3-hours audio stream consisting of above
sound events. The data was collected in a clean condition. Each
non-speech ”audio clip” has approximate 2 second length and the
overlapping of sound events will not be discussed in this work. We
used one hour audio stream for training and another two hours were
used for test. The sampling frequency is 44100Hz. The test au-
dio stream was manually split into about 3600 clips. The training
is carried out using clean signals. To explore the effect of noisy
miss-match conditions, we artificially added the exhibition noise to
the testing audio stream. Three test conditions of clean (no miss-
match), 10dB-SNR and 5dB-SNR were investigated. The proposed
segmentation and classification methods are implemented by the al-
gorithm described in Sec.3 with a 64-Gabor-filter set. We refer this
method as wavelet-JFK. As a reference method for the segmenta-
tion, the conventional method based on Kullback-Leiber distance of
Gaussian distributions is implemented [2]. For classification, we im-
plemented the GMM classifier as the reference. Both methods use
the conventional MFCC features. We refer the reference methods
as MFCC-KL and MFCC-GMM, respectively. Note that the JFK
method can not be applied in MFCC domain as the additivity is not
satisfied in this domain.

4.2. Results of classification with manual segmentation

In order to compare the methods in the classification, we first eval-
uate the classification using manual segmentation. Tab.1 shows the
overall classification accuracy which is defined as the ratio of num-
ber of correctly classified clips to the total number of clips. It can be
seen that the proposed wavelet-JFK is comparable to the MFCC-
GMM in the clean condition but significantly outperformed it in
noisy conditions. Under 5dB SNR, the MFCC-GMM totally failed
while the proposed method still yields relatively high accuracy.

4.3. Results of Segmentation

Next, we evaluate the proposed wavelet-JFK segmentation method.
The segmentation accuracy was calculated by alighting the seg-
mented clips to the manual ones. The segment is considered to be
wrongly segmented if 1) it does not contain start point and end point
of an event from manual clips 2) contain more than start point and
end point of events. Tab.2 shows the segmentation accuracy for the
proposed and the conventional MFCC-KLD method. Although the
superiority of the wavelet-JFK over the conventional method under

Table 2. Segmentation accuracy in percentage [%]
Class Clean 10-dB SNR 5-dB SNR
MFCC-KLD 95.50 80.34 65.87
Wavelet-JFK 92.35 82.54 74.32

Table 3. Classification accuracy with automatic segmentation:
wavelet-JFK vs. MFCC-KLD/GMM [%]

Methods Clean 10-dB SNR 5-dB SNR
Speech 84.44 vs 88.89 62.22 vs 41.56 54.22 vs 21.56
Cry 71.56 vs 72.00 51.56 vs 27.56 47.11 vs 12.00
Baby cry 69.11 vs 83.11 44.67 vs 35.56 40.22 vs 04.67
Breaking 95.56 vs 96.67 74.22 vs 56.89 60.89 vs 26.89
Explosion 100.0 vs 100.0 88.89 vs 61.78 69.33 vs 23.11
Knock 89.11 vs 89.11 78.00 vs 36.44 72.00 vs 13.78
Laugh 71.56 vs 68.89 55.56 vs 31.11 54.22 vs 12.67
Scream 94.89 vs 92.67 84.44 vs 31.33 69.33 vs 10.89
Overall 84.53 vs 86.42 67.44 vs 41.56 58.42 vs 15.69

noisy conditions is not as significant as for the classification, we got
nearly 9% accuracy improvement under 5-dB SNR condition. The
wavelet-JFK is also comparable to the conventional one in clean
condition. The fact that the proposed method is more superior in
the classification than the segmentation explains the effectiveness of
applying the confident interval which seems to be able to eliminate
the noise from the JFK representations when the test is carried out
under noisy condition. Table 3 shows the final performance when
combining both segmentation and classification.

5. CONCLUSIONS

We proposed a new similarity measurement based on Jump Function
Komogorov and its application for audio stream segmentation and
classification. The main advantage of the proposed method is the
robustness under noisy and miss-match conditions.
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