
BRINGING DIVERSE CLASSIFIERS TO COMMON GROUNDS: DTRANSFORM

Devi Parikh and Tsuhan Chen

Carnegie Mellon University
Department of Electrical and Computer Engineering

{dparikh,tsuhan}@cmu.edu

ABSTRACT

Several classification scenarios employ multiple indepen-

dently trained classifiers and the outputs of these classifiers

need to be combined. However, since each of the trained

classifiers exhibit different statistical characteristics, it is

not appropriate to combine them using techniques that are

blind to these differences. We propose a transform, dtrans-
form, that transforms outputs of classifiers to approximate

posterior probabilities, and caters to the statistical behavior

of the classifier while doing so. The transformed outputs

are now comparable, and can be combined using any of the

classical combination rules. We show convincing results that

demonstrate the effectiveness of the proposed transform in

providing better estimates of the posterior probabilities as

compared to standard transformations, as demonstrated by

lower KL distance from the true distribution, higher classi-

fication accuracies and higher effectiveness of the standard

classifier combination rules.

Index Terms— combining classifiers, estimating poste-

rior probabilities, dtransform, parametric transformation of

classifier outputs, intrusion detection

1. INTRODUCTION

Several scenarios utilize multiple independently trained clas-

sifiers. For instance, one-against-all classifiers are often

trained for each class, and the class with the highest score is

picked. Also, for robust classification, multiple weak classi-

fiers are often trained to classify among the same classes, and

their outputs are combined [1]. In both cases, it is important

to have good estimates of the confidence of the classifiers,

and more importantly, on the same scale so that they can

be meaningfully compared/accumulated. Since the different

classifiers can be of different types, or trained on different

features, or trained on different subsets of the training data

for diversity, or trained with learning algorithms that are not

deterministic, and the underlying class conditional distribu-

tions themselves are varied, they are likely to have different

statistical properties. And hence, combining their outputs

without accounting for these differences is not appropriate.

We propose a transform, dtransform, which is classifier

type independent, and transforms the outputs of the classi-

fiers to estimates of posterior probabilities while incorporat-

ing these differences in statistical characteristics of the clas-

sifiers. The transformed outputs can now be combined us-

ing any of the standard classifier combination rules [1]. In

this paper we focus on the transform itself, and not the classi-

fier combination rules. dtransform is a parametric, non-linear

transform that maps outputs of classifiers monotonically to

estimates of posterior probabilities.

The rest of the paper is organized as follows. Section 2

discusses the motivation behind and contribution of dtrans-

form compared to existing transforms, Section 3 describes

dtransform, followed by experiments and results in Section 4

and lastly Section 5 concludes the paper.

2. CONTRIBUTIONS OF DTRANSFORM

We discuss two factors that strongly motivate the need for a

transformation such as dtransform, and hence are the key con-

tributions of dtransform as compared to other transforms. We

note that we use the term ‘multiple classifiers’ loosely to not

only refer to the conventional multiple classifiers systems, but

also to include any multiple-class classification system that

provides a score for each class, even if it is implemented as a

single classifier with multiple outputs.

2.1. Adaptability

In most classification scenarios with multiple classes, the

class corresponding to the maximum score (after scaling

all to lie between 0 and 1 for instance) is taken to be the

final classification decision. However, if the distribution of

each classification output for the corresponding positive and

negative class data points is observed, we would find that

each one of them have a different optimum threshold, τ ,

that minimizes the classification error and can be determined

according to Bayes classification rule [2].

For instance, consider an odor recognition system where

a multi-layer perceptron (MLP) neural network with two out-

puts, d1 and d2, is trained to distinguish between two different

odors, o1 and o2 respectively. If the output of d1 is 0.6 and

33491-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

d1

o1 ~ o1 o2 ~ o2

0 1 010.7 0.3d2

Fig. 1. Illustrative examples of the statistical characteristics

of two outputs of an odor recognition system

that of d2 is 0.4, most systems would detect the odor to be

o1 since it has a higher output. However, if we were to an-

alyze the statistical characteristics of both detectors, we may

find distributions as shown in Fig.1 for the outputs of the two

detectors on validation data. According to the Bayes classifi-

cation rule [2], d1 has a value of τ1 = 0.7 and should pick o1

only if its output is greater than 0.7, while τ2 is 0.3. Hence,

in the above case, the appropriate decision should be to pick

o2, and not o1.

dtransform, since it incorporates the statistical properties

of the detectors and adapts to them, would capture this, and

would pick o2 as the odor in the test instance. In two-class

problems such as in biometric recognition systems such an

analysis seems obvious and perhaps quite prevalent. However

for most multi-class classification problems where classifiers

such as multi-layer perceptron (MLP) neural networks or sup-

port vector machines (SVM) are trained for instance, such an

analysis is often bypassed, and the threshold is assumed to be

0.5 for all the outputs of the MLP or 0 for each SVM, with-

out analyzing the statistical behavior of each classifier/output

post-training.

2.2. Non-linearity

In scenarios where multiple classifiers are to be combined,

several classifier combination rules [1], require good esti-

mates of posterior probabilities. Also, in scenarios where

different classification errors have different costs associated

with them, having good estimates of posterior probabilities

would allow us to directly use Bayes classification rule with

costs [2] to make optimum decisions.

Consider a scenario where, on a different test instance, d1

gives an output of 0.8, and d2 gives an output of 0.4. Which

odor do we pick? Even if the above analysis is performed,

and we realize that τ1 = 0.7 and τ2 = 0.3, if we merely

look at the difference of the outputs from the corresponding

thresholds, they are tied. But, it is intuitive that since τ1 is

much higher than τ2, an increment of 0.1 in the output of d1

may be considered to be significant, as compared to that of

d2. Hence, since each one of them have different τ ’s, a linear

transform such as simply taking the difference of the output

from its τ need not be appropriate. A good transform would

map the τ of each classifiers to a probability of 0.5, and all

other values should be mapped (monotonically) to the range

of 0 and 1. This requires a non-linear transform, which dtrans-

form provides. The other reason why this linear transform is

not appropriate is because it could produce values outside the

range of 0 and 1, which is not a valid distribution.

One could argue that the posterior probability can be esti-

mated non-parametrically using something like Fig.1. How-

ever, this is prone to over-fitting and other violations of certain

desired properties such as monotonic relationship between the

output of the classifier and it’s confidence. dtransform on the

other hand estimates the distribution parametrically, learning

only one parameter, the optimum threshold τ for each output.

Apart from ad hoc parameter tuning, principled ap-

proaches have been taken in trying to estimate posterior

probability distributions from outputs of classifiers for sev-

eral different classifier types. Duin et al. [3] use different

methods for estimation for different types of classifiers,

and hence is not classifier type independent. Moreover, the

method does not incorporate the differences in statistical be-

havior of the individual classifiers post-training. dtransform

is generic for most classifier types, and hence is more handy

to employ, and more importantly, is specifically molded

for each classifier. There has been work that indicates that

outputs of MLPs (which we use in our experiments) provide

estimates of posterior probabilities [4]. However, this being

theoretical work, it does not address practical problems faced

while training MLPs. To deal with these, most commonly

used schemes are normalization [1] and softmax [5]. Again,

none of these incorporate the statistical characteristics of the

individual trained MLP, while dtransform does.

3. APPROACH

Having provided most of the philosophy and intuition behind

dtransform in the previous section, we now describe the ap-

proach used to determine the transformation function. As

stated earlier, given a classification system trained for mul-

tiple classes, the goal is to determine a transform for each

output corresponding to each class. Since dtransform is para-

metric, this task boils down to determining the values of τ for

each output.

Suppose there are C classes, and we have C classifier out-

puts, one corresponding to each class. Given a validation

dataset, suppose μc is the score given by the cth output to

all the data points in the validation data set. Suppose the his-

togram of μc for the instances that belong to class c is N+
c (t)

and the histogram of μc for the instances that do not belong

to class c is given by N−
c (t). For a given value of threshold

t = θ , the number of misclassifications is given by

κc(θ) =
∑

t>θ

N−
c (t) +

∑

t<θ

N+
c (t) (1)

The optimum threshold that minimizes the number of

misclassification, according to Bayes classification rule [2],

which can be computed by a simple 1D search, is

3350

0 0.5 10

0.5

1

output of classifier

es
t.

of
 p

os
t.

pr
ob

.

Fig. 2. The dtransform family of curves. From top to bot-

tom, τ = 0.1, 0.3, 0.5, 0.7, 0.9. Whenever the output of the

classifier is τ , it is mapped to 0.5.

τc = argmin
θ

κc(θ) (2)

Now, in order for all outputs to be transformed such that

they are now comparable, the τ for all outputs should be

mapped to the same number. Since the transformed outputs

are meant to be estimates of posterior probability, this num-

ber should be 0.5. We assume the outputs are scaled to lie

between 0 and 1. Hence the following are the desired proper-

ties for the transform:

1. a raw output of 0 maps to a transformed output of 0

2. a raw output of 1 maps to a transformed output of 1

3. τ maps to 0.5

4. monotonically increasing

We pick the following form for dtransform that satisfies

all the above properties. The family of curves corresponding

to different values of τ is shown in Fig.2.

D(μ; τ) = μ
ln(0.5)
ln(τ) (3)

where μ is the output score to be transformed, and τ , the

optimum threshold determined for this classifier, is the pa-

rameter for dtransform.

One may argue that logistic regression [6], which has been

used widely, for example to transform the outputs of Fisher

Linear Discriminant classifier [3], could be used as the fam-

ily of curves instead of dtransform. However, logistic regres-

sion does not provide the flexibility of properties (1) and (2),

and more importantly, would require two parameters to be set,

while dtransform has just one intuitive parameter.

4. EXPERIMENTS AND RESULTS

Experiments were performed to demonstrate the following as

compared to other transforms: (1) Experiment 1: dtransform

provides higher accuracies and lower KL distance from the

true distribution (2) Experiment 2: dtransform makes classi-

fier combination rules such as sum and product rules [1] more

effective.

−4 −2 0 2 4
−4

−2

0

2

4

Feature 1

Fe
at

ur
e

2

Fig. 3. Distribution of synthetic data points used

Table 1. Different transforms being compared

normalization n(μi) = μi∑ C
j=1 μj

softmax s(μi) = eμi∑ C
j=1 eμj

tsoftmax t(μi) = eμi−τi∑ C
j=1 eμj−τj

dtransform d(μi) = μ

ln(0.5)
ln(τi)

i

∑ C
j=1 μ

ln(0.5)
ln(τj)

j

4.1. Higher accuracy and lower KL distance

We use synthetic data (2 features, 3 class) generated from

gaussian distributions as shown in Fig.3, so that the ground

truth posterior probabilities are known. 100 points were gen-

erated from each class, of which 30 were randomly selected

for training, 30 for validation and the rest for testing.

An MLP was trained on the data, whose outputs were

transformed using different transformations as listed in table 1

to get estimates of posterior probabilities. For each transform,

the class corresponding to the output with the maximum value

post-transformation was picked as the final classification de-

cision. This experiment was repeated 100 times with random

splits of the data. We compare the dtransform estimates to

those obtained by normalization [1] and softmax [5] - none of

which adapt the transformation based on the statistical char-

acteristics of the classifier and hence do not incorporate τ , as

well as and tsoftmax - which we design for comparison sake,

and is similar to softmax, but takes τ into account. The forms

of each of these are shown in Table 1, where we consider a C
class classification problem, and the output scores for a given

test instance are μi, i ∈ 1, ..., C. Each output has an optimum

threshold τi associated with it. It can be seen that each of

these are valid probability distributions with the values of the

transformed outputs lying between 0 and 1 and the sum of all

C outputs in each case being 1.

KL distance between the estimates and true posterior

3351

n s t d

88

90

92

94

96

98
A

cc
ur

ac
y

n s t d

0.2

0.3

0.4

0.5

0.6

0.7

K
L

D
is

ta
nc

e

Fig. 4. Results on synthetic data using a single MLP neural

network. Mean and 95% confidence intervals are shown. n =

normalization, s = softmax, t = tsoftmax, d = dtransform

probability distributions, and the classification accuracy were

used as the performance metrics. The results obtained can

be seen in Fig.4. It can be seen that normalization and

softmax both have the same (low) accuracies because they

do not adapt according to τ , but normalization has a lower

KL distance. dtransform has better classification accuracy

because it adapts to each τ for every output. Since tsoftmax

also incorporates the optimum threshold for each output, its

classification accuracy is the same as that for dtransform,

however its KL distance from the true distribution is high,

which validates the parametric form dtransform uses. Hence,

dtransform provides a higher classification accuracy as well

as lower KL distance, while the other transforms lose out on

at least one of these factors.

4.2. More effective classifier combination

We use a real intrusion detection dataset from KDD 1999 [7]

which has over 5 million data points, 41 features coming from

3 different sources of information, and 5 classes - 1 corre-

sponding to normal traffic and 4 corresponding to different

attack types. A 5 × 5 cost matrix is also associated with the

different classification errors, and is provided with the dataset.

An ensemble of classifiers approach capable of data fusion,

inspired in part by Adaboost, Learn++, was used. It uses hi-

erarchical ensembles of classifiers and combines information

from multiple sources. In order to do so, it employs several

sum and product rules [1] to combine the multiple classifiers.

Details can be found in [8]. We use MLP neural networks

as the base classifiers. dtransform was applied to the out-

puts of all MLPs before combining them at various stages in

Learn++. The cost matrix was considered using the Bayes

classification rule for cost [2]. Fig.5 shows that the cost per

instance incurred using dtransform is lower than that obtained

normalization dtransform

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

C
os

t p
er

 in
st

an
ce

Fig. 5. Results on a real intrusion detection dataset using en-

sembles of classifiers. Mean and 95% confidence intervals

are shown.

without employing dtransform (using just normalization) with

statistical significance. This shows that dtransform makes the

classifier combination rules more effective, while making the

cost considerations straightforward.

5. CONCLUSION

We proposed dtransform, a simple yet principled, parametric,

non-linear transformation of the outputs of classifiers to esti-

mates of posterior probabilities. It is classifier type indepen-

dent, however it incorporates the statistical characteristics of

each classifier so that the classifiers are now on fair grounds

to be compared/aggregated. We demonstrated the effective-

ness of dtransform in providing better estimates of posterior

probabilities than standard transformations.

6. REFERENCES

[1] J. Kittler, M. Hatef, R. Duin and J. Matas. On combining classifiers. In

PAMI, 1998.

[2] D. Duda, P. Hart and D. Stork. In Pattern Classification, 2/e, Chap. 2,

pp. 20-29, New York, NY: Wiley Interscience, 2001.

[3] R. Duin and D. Tax. Classifier conditional posterior probabilities. In

LNCS, 1998.

[4] M. Richard and R. Lippmann. Neural network classifiers estimate

Bayesian a-posteriori probabilities. In Neural Computation, 1991.

[5] E. Alpaydin and M. Jordan. Local linear perceptrons for classification.

In IEEE Trans. on Neural Networks, 1996.

[6] A. Anderson. Logistic discrimination. In P. Krishnaiah and L. Kanal

(eds.), Handbook of Statistics 2: Classification, Pattern Recognition and

Reduction of Dimensionality, 1982.

[7] The UCI KDD Archive, Information and Com-

puter Science, University of California, Irvine,

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[8] M. Lewitt and R. Polikar. An ensemble approach for data fusion with

Learn++. In Proc. Intl. Wrk. on Multiple Classifier Systems (MCS),
2003.

3352

