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ABSTRACT
Kernel-target alignment is commonly used to predict the behavior

of any given reproducing kernel in a classification context, without

training any kernel machine. However, a poor position of the data

in feature space can drastically reduce the value of the alignment.

This implies that, in a kernel selection setting, the best kernel in a

given collection may be associated with a low value of alignment.

In this paper, we present a new algorithm for maximizing the align-

ment by data translation in feature space. The aim is to reduce the

biais introduced by the translation non-invariance of this criterion.

Experimental results on multi-dimensional benchmarks show the ef-

fectiveness of our approach.

Index Terms— kernel alignment, data translation, SVM

1. INTRODUCTION

Kernel-based methods map a set of data x from the input

space X into some other (possibly infinite) feature space F
via a nonlinear map φ, and then apply a linear procedure in

F . The embedding is performed by substituting kernel val-

ues for the inner products, i.e., κ(xi, xj) = 〈φ(xi), φ(xj)〉F .

This provides an elegant way of dealing with nonlinear al-

gorithms by reducing them to linear ones in F . A typical

example is Support Vector Machines (SVM) [1], which map

data into a space where the classes of data are more readily

separable, and maximize the margin – or distance – between

a separating hyperplane and the closest points of each class.

Despite the success of kernel machines, the selection of

an appropriate kernel is still critical for achieving good gen-

eralization performance. Recently, an interesting solution has

been developed through the concept of kernel-target align-

ment (KTA). The latter measures the degree of agreement

between a reproducing kernel and a learning task [2]. Previ-

ous works on KTA focused mainly on its optimization by lin-

ear combination of kernels in a transductive or inductive set-

tings [3, 4, 5, 6]. More recently, we proposed in [7] a gradient

ascent algorithm for maximizing KTA over a linear transform

in input space. In all these references, the effect of translation

in feature space was not studied. While data translation in F
does not, in theory, affect the resulting SVM, it can greatly

modify the value of alignment. In a kernel selection setting,

this translation non-invariance may lead to bad selection of

kernel. To solve this problem, the standard data centering

method should be used [8]. While this method is very simple,

it is not optimal in a KTA sense. In [9], Meilà formulated the

data centering problem in the form of a criterion J to be max-

imized by data translation in feature space. It was shown that

the solution of this problem can be expressed as a linear com-

bination of training vectors as soon as the initial solution is in

the span of the training set. However, in our best knowledge,

no experimental results were reported to show the effective-

ness of this approach. In this paper, we explicitly model the

translation in the form of a linear combination of training vec-

tors and propose a new algorithm based on gradient ascent in

parameter space rather than in feature space. We also show

the effectiveness of the two approaches for KTA.

The rest of this paper is organized as follows. In Sec-

tion 2, kernel-target alignment is introduced. Our gradient

ascent algorithm is presented in Section 3. In Section 4, we

apply the method in the KTA case and show its effectiveness

through simulations in Section 5. Finally, concluding remarks

and suggestions follow.

2. KERNEL-TARGET ALIGNMENT

The alignment criterion is a measure of similarity between

two kernels, or between a kernel and a target function [2].

Given a n-sample data set Dn, the alignment of kernels κ1

and κ2 is defined as follows

A(K1, K2) =
〈K1, K2〉F√〈K1, K1〉F 〈K2, K2〉F

, (1)

where 〈·,·〉F denotes the Frobenius inner product, and K1 and

K2 are the Gram matrices with respective entries κ1(xi, xj)
and κ2(xi, xj), for all xi, xj ∈ Dn.

In [2], Cristianini et al. proposed to maximize the align-

ment with respect to K for the target yy� in order to deter-

mine the most relevant kernel for a given classification task

with target yi ∈ {±1}. In that case, the alignment can be

written as:

A(K) =
〈K, yy�〉F√〈K, K〉F 〈yy�, yy�〉F

=
y�Ky

n ‖K‖F
. (2)
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The ease with which KTA can be estimated using only train-

ing data makes it an interesting tool for kernel selection. How-

ever, a poor position of the data in the feature space can dras-

tically affect this criterion. To see that, suppose the origin is

far away from the convex hull of the data. Then, the elements

of the kernel matrix K have all about the same value, say z.

Using (2), it is easy to show:

A(K) →
∑

ij yjyiz

n
√∑

ij z2
=

(n+ − n−)2

n2
=

(ρ − 1)2

(ρ + 1)2
, (3)

where n+ (resp. n−) denotes the number of data points with

+1 (resp. −1) labels, and ρ = n+/n−. From (3), it follows

that KTA may depend on the ratio ρ only. In particular, for

ρ = 1, one can found the worst alignment A(K) = 0 even if

the data can be perfectly separated by a SVM. This strongly

caution us the recentering of KTA before any kernel selection

procedure based on this criterion.

3. DATA CENTERING IN FEATURE SPACE

In this Section, the goal is to optimize any criterion J which is

a smooth function of elements of the Gram matrix Ka defined

by:

[Ka]i,j=1,··· ,n = κa(xi, xj),

where κa denotes the kernel representing the scalar product

with the origin shifted in a ∈ F , i.e.:

κa(xi, xj) � 〈φ(xi) − a, φ(xj) − a〉. (4)

In the rest of this paper, we assume that a is a linear combi-

nation of the training set, hence:

a =
n∑

i=1

αiφ(xi). (5)

The standard data centering method (e.g [8]) moves the origin

at the center of gravity of the data by setting αi = 1/n for

all i. For a binary classification task, [9] suggested to set a
between the centers of gravity of the two classes in feature

space. Formally, this is performed for

αi =
{

1/(2n+) if yi = 1,

1/(2n−) if yi = −1.
(6)

By applying the so-called kernel trick on the above definitions

for κa(x, x′) and a, we obtain

κa(x, x′) = κ(x, x′) +
∑

i

∑
j αiαjκ(xi, xj)

−∑
i αi[κ(xi, x) + κ(xi, x

′)].
(7)

Thus, the ”centered” Gram matrix is given by

Ka = K − Γ�
α K − KΓα + Γ�

α KΓα, (8)

where Γα = (α, · · · , α) and α = (α1, · · · , αn)�.

3.1. Data centering by gradient step in α-space

Let the centering criterion be

max
α

J(Ka). (9)

Assuming the gradient of J with respect to α well defined,

we have:

∇αJ(Ka) =
n∑

i=1

n∑
j=1

∂J

∂κa(xi, xj)︸ ︷︷ ︸
gij

×∇ακa(xi, xj), (10)

where

∇ακa(xi, xj) =

⎛
⎝ ∂κa(xi, xj)/∂α1

· · ·
∂κa(xi, xj)/∂αn

⎞
⎠ . (11)

From equation (7)

∂κa(xi, xj)
∂αl

= −[κ(xl, xi)+κ(xl, xj)]+2
∑
i′

αi′κ(xl, xi′).

Since κa(xi, xj) is symmetric, gij = gji, and therefore:∑
i

∑
j gij κ(xl, xi) =

∑
i κ(xl, xi)

∑
j gji

=
∑

i κ(xl, xi) g�
i e

= k�
l Ge,

(12)

where e is the column vector of 1’s, gi = (g1i, · · · , gni)�,

G = (g1, · · · , gn)�, kl = (κ(x1, xl), · · · , κ(xn, xl)�. Sim-

ilarly, one can show
∑

i

∑
j gij κ(xl, xj) = k�

l Ge. Thus,

the gradient vector (10) can be computed as:

∇αJ = 2K(λα − Ge), (13)

where λ =
∑

i

∑
j gij . Taking a step in the direction ∇αJ

with step size η means:

α ← α + 2ηK(λα − Ge) � α +Δα. (14)

With abuse of notations, denote by Ka+Δα the updated Gram

matrix associated with the parameter vector (14). From (8), it

follows:

Ka+Δα

= K − Γ�
α+ΔαK − KΓα+Δα + Γ�

α+ΔαKΓα+Δα,

= Ka − Γ�
ΔαK − KΓΔα + Γ�

ΔαKΓΔα + 2Γ�
α KΓΔα.

Hence, the recursive update for Ka can be written as:

Ka ← Ka − ve� − ev� + (2α +Δα)�v × E, (15)

where v = KΔα and E = ee�. Finally, our gradient ascent

algorithm can be summarize as follow:

1. Choose the initial solution α ← α0;

2. Compute the Gram matrix K;

3. Compute the matrix [G]ij = ∂J/∂κa(xi, xj);

4. Update Ka by (15) and α by (14);

5. Go to step 3 until convergence.
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3.2. Data centering by gradient step in F-space

In [9], Meilà considered the general problem maxa∈F J(Ka)
and suggested to solve it by gradient ascent. The proposed

update rule was:

a ← a + η∇aJ(Ka), (16)

where the step δa = η∇aJ(Ka) was shown to be:

δa = γa +
n∑

i=1

γiφ(xi) (17)

with γ = −∑
i γi and γi = −2η

∑n
j=1 ∂J/∂κa(xi, xj).

Although all the coefficients γ above can be computed using

only kernel evaluation, it is clear that, in the general case, the

computation of (16) requires to know a by its coordinates in

F . Noting that δa is expressed as a linear combination of

a and the training vectors, Meilà suggested to choose a0 =
0 as the initial solution in order to stay in the span of the

training vectors at each step. We now show links between

this approach and our own algorithm.

Let a be the linear combination (5). Note that initializing

a = a0 = 0 can be done easily by setting αi = 0 for all i.
Combining (16) and (17), we found

a + η∇aJ(Ka) = (1 + γ)a +
∑n

i=1 γiφ(xi),
=

∑n
i=1[αi + γαi + γi]φ(xi).

(18)

It immediately follows that the update rule (16) does not need

to be computed explicitly. More formally, since γi = −2ηg�
i e

and γ = 2ηλ, one can update α by

α ← α + 2η(λα − Ge). (19)

Comparing (14) and (19), one can see that our algorithm re-

quires the Gram matrix K at each step while Meila’s algo-

rithm not. Intuitively, this matrix can be viewed as a coordi-

nate matrix projecting the step δa onto the span of the training

set. As shown in Section 5, this improves the convergence rate

of the method.

4. OPTIMIZATION OF KTA BY CENTERING

In this Section, we consider data centering with the crite-

rion J(Ka) = A(Ka) and the algorithm presented in Sec-

tion 3. For this purpose, we need to compute the terms gij =
∂A/∂κa(xi, xj). Using the standard derivative for a quo-

tient, we get:

gij =
1
n
×

∂

(
〈Ka, yy�〉F /‖Ka‖F

)

∂κa(xi, xj)

=
yiyj‖Ka‖F − κa(xi, xj)‖Ka‖−1

F 〈Ka, yy�〉F
n‖Ka‖2

F

=
yiyj

n‖Ka‖F

− A(Ka)

‖Ka‖2
F

κa(xi, xj).

From the above definitions for gi and G, we found

g�
i e =

yi (n+ − n−)
n‖Ka‖F

− A(Ka)
‖Ka‖2

F

k�
ai

e, (20)

and

Ge =
n+ − n−

n‖Ka‖F

y − A(Ka)
‖Ka‖2

F

Kae. (21)

Therefore, the update rule (14) for α can be expressed as:

α ← α+ 2ηK

(
λα− n+ − n−

n‖Ka‖F

y +
A(Ka)

‖Ka‖2
F

Kae

)
, (22)

where

λ =
(n+ − n−)2

n‖Ka‖F

− A(Ka)
‖Ka‖2

F

∑
i

∑
j

κa(xi, xj). (23)

5. EXPERIMENTS

To validate our algorithm, we used the Waveform benchmark.

This data set, available at http://www.ics.uci.edu/˜mlearn/, con-

tains 400 training samples of 21 variables each and 4600 val-

idation samples.

In our experiments, we considered Radial Basis Func-

tions (RBF) κ(xi, xj) = exp(−‖xi − xj‖2/2σ2), with σ ∈
{.1, .2, .5, 1, 2, 5}. For each kernel, we trained a l1-SVM with

the best C ∈ {1, 5, 10, 50, 100, 500, 1000, 5000} found by

hold-out testing. Table 1 reports the generalization error for

each SVM. We can see that the minimum 10.37% was achieved

for the Gaussian kernel parameterized by σ = 5. Next, we

considered KTA and data centering. Both Meila’s and our al-

gorithm stopped when the improvement of the alignment was

less than 10−6. The step η in eqn. (14) and (19) was opti-

mized empirically for each kernel in both algorithms. Table 2

reports the alignment for each candidate and different cen-

tering methods. Note first that for this real data, moving the

origin at the center of gravity in feature space degraded the

value of the alignment, except for σ = 5. In comparaison,

setting the origin halfway between the centers of gravity of

the two classes was found to be a better heuristic. We also re-

mark that Meilà’s and our algorithm were very similar. They

both gave a great improvement in the KTA score, in particular

for the Gaussian kernel with σ = 1. Note that from Table 3,

the alignment measured on the validation set is also greatly

improved after data centering. Suppose now we used KTA

σ .1 .2 .5 1 2 5
error 14.72 15.41 15.09 14.59 10.91 10.37

Table 1. Generalization performance (in %) for a l1-SVM

with RBF and hyperparameter σ.
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Centering \ σ .1 .2 .5 1 2 5

none .050 .050 .050 .052 .221 .219

#1 .044 .044 .044 .046 .204 .351

#2 .057 .056 .057 .059 .256 .431

Meila’s algo. .212 .213 .213 .215 .387 .498

our’s algo. .213 .213 .213 .216 .388 .499

Table 2. Alignment for the training set and the RBF with hy-

perparameter σ. The origin in feature space was not changed

(none), moved to the center of gravity of the data (#1), moved

halfway between the centers of gravity of the two classes (#2),

optimized using Meilà’s or our algorithm.

Centering \ σ .1 .2 .5 1 2 5

none .015 .015 .147 .021 .240 .200

#1 .034 .034 .034 .039 .229 .298

#2 .036 .036 .036 .043 .288 .379

Meilà’s algo. .117 .117 .117 .120 .375 .458

our algo. .117 .117 .117 .120 .374 .459

Table 3. Alignment for the validation set. See Table 2 for a

brief description of the different centering methods compared.

without centering for kernel selection. In that case, the best

alignment is given by the polynomial kernel of degree 1, see

Table 2. From Table 1, we would obtain a generalization error

of 13.61%, which is not the minimum. However, if we now

recenter the data with our algorithm for instance, then the best

model is found by KTA. Figure 1 shows the evolution of the

alignment for the RBF kernel with σ = 1. We note that hav-

ing explicitly define the gradient ascent in α-space has im-

proved the convergence rate comparing to the general center-

ing method of Meilà. Similar results were founded for other

kernels, but more analysis are needed to explain this behavior.

In Figure 2, we show the effect of the initial solution α0 for

the RBF kernel with σ = 5. Despite the local nature of the

search, the algorithm gave the maximum alignment 0.499 for

the simple solutions considered. As noted previously, starting

from (6) seems to be a good heuristic in practice.

6. CONCLUSION

In this paper, we considered data centering in feature space.

We defined the translation as a linear combination of training

vectors and proposed to optimize a given criterion by a gra-

dient ascent in the parameter space. We used the method to

improve the kernel-target alignment (KTA) criterion. Exper-

imental results with a multi-dimensional benchmark showed

the effectiveness of our approach for this criterion. Further

works includes the optimization of the step of the gradient as-

cent in a data-dependent way. We also plan to study the prob-

lem consisting in optimizing a linear combination of centered

kernels.
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Meilà’s algo.
Our algo.

Iteration

A
lig

nm
en

t

Fig. 1. Evolution of the alignment for σ = 1 (RBF kernel).
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