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ABSTRACT

Image representation and distance metric are both significant
for learning-based visual classification. This paper presents
the concept of k-Nearest-Neighbor Simplex (kNNS), which
is a simplex with the vertices as the k nearest neighbors of
a certain point. kNNS contributes to the image classifica-
tion problem in two aspects. First, a novel distance metric
between a point to its kNNS within a certain class is pro-
vided for general classification problem. Second, we develop
a new subspace learning algorithm, called Discriminant Sim-
plex Analysis (DSA), to pursue effective feature representa-
tion for image classification. In DSA, the within-locality and
between-locality are both modeled by kNNS distance, which
provides a more accurate and robust measurement of the prob-
ability of a point belonging to a certain class. Experiments on
real-world image classification demonstrate the effectiveness
of both DSA as well as kNNS based classification approach.

Index Terms— subspace learning, graph embedding, k-
nearest-neighbor simplex, discriminant simplex analysis.

1. INTRODUCTION

Image classification is an extensively discussed topic in com-
puter vision and pattern recognition fields. For a given query
image, the basic idea is to classify it into a predefined class
associated with the top-matched training image. In general,
there are two most important subproblems in conducting im-
age classification in practice: 1) how to seek effective image
feature representation for discriminant analysis; and 2) how to
choose appropriate distance measurement favoring such fea-
tures to enhance the classifier’s discriminating power.

Recent studies reveal that locality features and intrinsic
geometric structures in the input space take on discriminating
power for classification. The representative algorithms, such
as LLE [12], Isomap [16], Laplacian Eigenmaps [2], LEA
[6], and LPP [10], assume that high-dimensional data can be
considered as a set of geometrically related points lying on or
nearly on a smooth low-dimensional manifold. The manifold
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embedding is closely related to preserving the local neighbor-
hood connections without assumption on the data distribution.
Graph Embedding [18] has shown that these methods can all
be unified within the same framework including their linear/
kernel/ tensor extensions [9, 3]. To further boost the discrimi-
nating power of such techniques, recent discriminant learning
methods, such as MFA [18], LDE [4], LDG [8], and CEA
[7], combine the Fisher criterion [1] with manifold criterion
to explicitly aim at the classification capacity and discrim-
inating efficiency of the embedding. These algorithms are
more general since the data distributions are modelled with
affinity graphs. Such Nearest-Neighbor type of distance mea-
sure strategy considers the membership style for isolated data
points in the feature space. However, it is often more accu-
rate to make the subspace modeling based on several nearest
neighbors of each datum when they are available [11, 5].

Aiming to improve discriminant feature representation and
distance measurement, we present a new idea, called Discrim-
inant Simplex Analysis (DSA), for image classification. DSA
is designed from a novel theoretical perspective on the graph
embedding descriptor via the concept of k-Nearest-Neighbor
Simplex(kNNS). For discriminant feature representation, DSA
models both within-locality and between-locality data distri-
bution structures by graph embedding in a manner of kNNS
criterion. A linear subspace is then learned by optimizing
the DSA objective function via a closed-form eigenvalue de-
composition method. It does not require any data distribution
assumptions and provides more possible projection directions
for discriminant learning. For distance measurement of the
classifier, the distance from a query to a particular class is
measured by the distance from the query to the nearest point
in its kNNS constituted by the samples from the class, which
provides a more accurate and robust measure of its possibility
belonging to a certain class. Extensive comparisons between
DSA and most popular algorithms in real-world experiments
reveal the effectiveness of the proposed framework.

2. K-NEAREST-NEIGHBOR SIMPLEX

Suppose we have the original data set X = {xi : xi ∈
R

D}n

i=1
. Assume only considering the locality in the data

space, the k-Nearest-Neighbor Simplex (kNNS) is a set of
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Fig. 1. kNNS vs. NFL for two-class classification. kNNS metric
correctly classifies all the data points whereas NFL misclassifies the
round point located in the center. Note that c < b < a in this case.

infinite data generated by the linear combination of k local
points x1,x2, · · · ,xk as

S(x1,x2, · · · ,xk) =
{ k∑
i=1

�ixi |
k∑

i=1

�i = 1, �i ≥ 0
}
. (1)

Instead of only considering the similarity between sample
pairs for classification, distance measurement for an individ-
ual sample and a set of multiple samples can be derived by
using kNNS concept. For a particular sample xi, the distance
between xi and its kNNS is measured by minimizing the fol-
lowing objective function

∥∥xi −

k∑
j=1

�
(i)
N(j)x

(i)
N(j)

∥∥, (2)

where set {N(j)}kj=1 is the index set of the k nearest neigh-
bors of the sample xi in local.

Inspired by the above discussion, a new multi-class clas-
sification algorithm, kNNS classification, can be designed via
the concept of kNNS. Let L = {li : li ∈ {1, 2, . . . ,m}}ni=1

be the corresponding class label for X (m classes in total).
For a given query xt: 1) calculate its k nearest neighbors
{x

(l)
N(j) : l ∈ 1, 2, . . . ,m}kj=1 from each class; 2) build sim-

plex for each set of k nearest neighbors and calculate the dis-
tance {d

(l)
kNNS : l ∈ 1, 2, . . . ,m} between xt and its kNNS by

Eq. 2; 3) infer the label lt of xt with

l∗t = argmin
l

d
(l)
kNNS. (3)

The difference between kNNS and Nearest Feature Line
(NFL) [11] is obvious. Fig. 1 shows the two-class classifi-
cation toy example using kNNS and NFL. In this case, the
space of kNNS is inside the triangle area whereas the space
of NFL consists of the three feature lines covering the three
sides of the triangle. Since the feature lines could be infinite
long, some feature lines from the different class may intersect
and induce misclassifications. However, in such a geometric
point of view, kNNS can measure the distances between data
and classes more accurately for better classification.

Fig. 2. Two-class classification example for DSA embedding.

3. DISCRIMINANT SIMPLEX ANALYSIS

The kNNS concept is not only appropriate to define distance
metric, but also effective to design graph-embedding-based
feature extraction algorithm, such as Discriminant Simplex
Analysis (DSA), which is favoring the assumption that the ge-
ometric relationship among high-dimensional data can be de-
scribed by the distance measurement between data point and
kNNS. The motivation of DSA is to keep the class relation
reflected by the known labels after embedding or subspace
learning. In other words, in the derived low-dimensional DSA
subspace, we expect to preserve neighboring points close if
they have the same locality label, while preventing points
of other classes from entering the neighborhood. This basic
learning strategy is consistent with the existing methods such
as MFA [18], LDE [4], LDG [8], and CEA [7].

Define two types of k-nearest neighbors for each data point
inX : within-locality graph kw-NN and between-locality graph
kb-NN. Note that kw and kb can be different. Given a la-
bel set L = {li : li ∈ R}ni=1, for each point xi with label
l(i), we search its within-locality kw-NNs from X and ob-
tain a set X

(i)
w = {x

(i)
w(j)}

kw
j=1 satisfying l

(i)
w(j) = l(i). On

the other hand, we find the set of xi’s between-locality kb-
NNs as X

(i)
b = {x

(i)
b(j,p)}

kb,m−1
j,p=1 , satisfying l(i)b(j,p) �= l(i) and

l
(i)
b(j1,p)

= l
(i)
b(j2,p)

for j1, j2 = 1, 2, . . . , kb, where m denotes
the number of classes in the data space.

The objective of DSA is to learn a linear projection P ∈
R
D×d of our desired subspace that minimizes the distance

between each sample to its kNNS of the same class and at
the same time maximizes the distance between each sample
to its kNNS of another nearest different class. The objective
function for modeling P is formulated as follows

max εb(P) and min εw(P), (4)

where{
εw(P) =

∑n

i=1

∥∥PT
xi −
∑kw

j=1 c
(i)
w(j)P

T
x
(i)
w(j)

∥∥2
εb(P) =

∑n

i=1

∥∥PT
xi −
∑kb

j=1 c
(i)
b(j,l∗)P

T
x
(i)
b(j,l∗)

∥∥2 .

(5)
Here, we define the index sets w(j),b(j, l∗) = 1, 2, · · · , n,
reconstruction coefficient set C(i)

w = {c
(i)
w(j)}

kw
j=1 for the within-

locality case and C
(i)
b = {c

(i)
b(j,l∗)}

kb
j=1 for the between-locality

case respectively. Fig. 2 is for better understanding this idea.
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The coefficient matrices is calculated in terms of the sim-
ilar objective functions as Eq. 5 by removing the PT . Define
the kw × kw local Gram matrixGi for each xi asGi[u, v] =
(
xi−x

(i)
w(u)

)T (
xi−x

(i)
w(v)

)
, we want to solve the optimization

min
c
(i)
w

c(i)Tw Gic
(i)
w , s.t.

kw∑

j=1

c
(i)
w(j) = 1, and c

(i)
w(j) ≥ 0. (6)

Then Cw[i,w(j)] = c
(i)
w (j). This problem can be easily

solved by using the optimization toolbox in Matlab, such as
the function quadprog in Matlab 7.0. Since the number of
kw is usually small, this procedure is fast enough in prac-
tice. On the other hand, define the kb× kb local Gram matrix
G̃i for each xi in its l∗-NN simplex as G̃i[u, v] =

(
xi −

x
(i)
b(u,l∗)

)T (
xi− x

(i)
b(v,l∗)

)
, we have the same way to calculate

c
(i)
b . Then Cb[i,b(j, l∗)] = c

(i)
b (j).

After we get Cw and Cb, the projection matrix P can be
calculated by solving the eigenvalue problem

(
XLDSAw XT

)
−1
XLDSAb XTP = ΛP, (7)

where we define the quadratic Laplacian matrices LDSAb =
LTbLb and L

DSA
w = LTwLw. Typically, it is straightforward to

define the Laplacian matrix pair [7] as

{
Lw = Dw −Cw
Lb = Db −Cb

, (8)

where Dw[i, i] =
∑n

j=1Cw[i, j] and Dw[i, j] = 0 for ∀ i �=

j, also Db[i, i] =
∑n

j=1Cb[i, j] and Db[i, j] = 0 for ∀ i �=
j. The subspace P is spanned with {p1 p2 · · · pd}, the gen-
eralized eigenvectors that correspond to the d largest eigenval-
ues in Eq. 7. Any new input datum Xnew can be represented
by the new coordinates Ynew = PTXnew when P is avail-
able from training. If we first project the data into the PCA
subspace with projection matrix PPCA, the new coordinates
ofXnew can be represented asYnew = PTPTPCAXnew.

For a certain class, the data set can be roughly considered
as convex within locality. If Okw(xi) =

∑kw
j=1 c

(i)
w(j)x

(i)
w(j)

andO(l
∗)

kb
(xi) =

∑kb
j=1 c

(i)
b(j,l∗)x

(i)
b(j,l∗) are the within-locality

kw-NN simplex and the l∗-th between-locality kb-NN sim-
plex, correspondingly, PTOkw(xi) and PTO

(l∗)
kb

(xi) will be
the low-dimensional simplex representations. Then we have
that the samples within the simplex S({x

(i)
w(j)}

kw
j=1) can be

considered all belonging to the same class. Then, the distance
between xi and Okw(xi) can more accurately characterize
the distance between xi and the class l(i). To boost the dis-
criminating power, the distance between each sample to its
corresponding class should be small, while the distance be-
tween each sample to a different class should be large, which
leads to Eq. 4. Compared with the distance between a sam-
ple and its nearest neighbor, the distance between a sample to

Table 1. Face recognition accuracy comparison on the ORL
database using multiple-sample metric.

Method 3-Train 4-Train 5-Train
Accuracy (%)[Dim.] (%)[Dim.] (%)[Dim.]

NFL + NN 76.79 [117] 79.58[58] 84.00 [133]
2NNS + NN 78.21 [107] 82.5 [106] 87.5 [158]
kNNS + NN 81.07 [119] 86.25 [84] 89.50 [111]

its kNNS can better characterize the possibility of a sample
belonging to a certain class, since the latter is robust to the
small sample size issue, and the kNNS can better represent
the distribution of the data.

4. EXPERIMENTS AND APPLICATIONS

We show as follows the comprehensive performance compar-
isons between DSA and other state-of-the-art subspace learn-
ing algorithms for face recognition.

4.1. Distance Metric

The ORL [13] face database contains in total 400 images of
40 subjects with 10 gray-scale face images for each. The im-
ages show all frontal and slight tilt/rotation of the face up to
20 degrees. For some subjects, the images were taken at dif-
ferent time, varying the lighting, facial expressions (open or
closed eyes, smiling or not smiling) and facial details (glasses
or no glasses). The images are manually aligned, cropped and
resized to 32×32 pixels, with 256 gray levels per pixel. Each
image is represented by a 1024-dimensional column vector.

To demonstrate the advantage of kNNS in distance met-
ric description, we conduct the face recognition experiments
on ORL images and compare 2NNS and kNNS with NFL.
We choose 2NNS for fairly comparing with NFL since NFL
considers two points for each feature line. There are three
different kinds of database partitions for the evaluation. The
three training sets are formed by images of each individual
with 3, 4, and 5 randomly picked samples respectively. The
rest images of each case form the testing sets. The k of kNNS
here is set to the same as the number of training samples of
each individual, such as 3, 4, or 5. All the comparison meth-
ods are performed on the original image vectors with PCA
dimensionality reduction (keeping all eigenvectors). Nearest
neighbor classifier is used. We show the results in Table 1. It
can be seen that kNNS + NN consistently outperforms oth-
ers and significantly improves the NFL classification, which
validates the discussions in the pervious sections.

4.2. Face Recognition

The CMU PIE [14] database contains in total 41,368 images
of 68 subjects with 500+ images for each. The face images
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were captured under varying pose, illumination, and expres-
sion. For each subject, we manually select 168 near frontal
images which cover large illumination variation, pose of roll/
yaw/tilt head rotation and moderate variety in expression, con-
stituting a challenging face database for recognition task. Face
images are manually aligned, cropped out from the selected
images and resized to be 20 × 20, with 256 gray levels per
pixel.

To further reduce the size of the database, we randomly
choose around 1/5 samples for each individual and obtain a
subdatabase with 34 images per individual. We finally have
2312 images in total. Random database partitions are done
with 5, 10, 15, and 20 images per individual for training, and
the rest of the database for testing. Different subspace learn-
ing methods, Eigenfaces [17], Fisherface [1], Laplacianface
[10], and DSAface, are applied to represent the facial features
for NN classification. All the results are from best tuning
of the algorithm parameters. Table 2 shows the recognition
results in terms of accuracy. As can be seen, Eigenface per-
forms the worst and is comparable to the baseline, which uses
the original image feature; Laplacianface is slightly better
than Fisherface; DSAface consistently outperforms the other
methods with highest recognition rates. One possible expla-
nation of the superior performance of DSAface in the test lies
on the large image variations of PIE database. DSA benefits
from the robustness of both kNNS and Fisher criterion.

5. CONCLUSION

We have presented to use Discriminant Simplex Analysis for
discriminating analysis on image classification and visual recog-
nition. DSA is designed from a novel theoretical perspec-
tive on the graph embedding descriptor via the concept of
k-Nearest-Neighbor Simplex. For discriminant feature rep-
resentation, DSA models both within-locality and between-
locality data structures by graph embedding in a manner of
kNNS criterion. The superiority of DSA is embodied as that
the distance between each sample to its kNNS of a certain
class provides a more accurate and robust measure of its pos-
sibility belonging to the class. Real-world experiments on
face recognition show that the algorithm design, benefiting
from both Fisher criterion and kNNS criterion, can signifi-
cantly boost the discriminating power. One future direction
can focus on investigating the tensor form [15] of the DSA
framework for discriminant analysis on high-order structures
of multivariate data.
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