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ABSTRACT

This paper presents a novel blind strategy to estimate the channel

parameters in systems that make use of the well known Alamouti

orthogonal space-time code to achieve full diversity. The channel

parameters are obtained by computing the eigenvectors of a matrix

containing 4th-order cumulants of the observations. The matrix to

diagonalise is selected for each channel realization using a simple

criterion based on the spread of its eigenvalues. Simulation results

show that the performance of the proposed method is similar to the

obtained using the well-known joint approximate diagonalisation of

eigenmatrices (JADE) algorithm, with a low computational cost.

Index Terms— MIMO systems, Channel coding, Decoding.

1. INTRODUCTION

In the last decade, a large number of Space-Time Coding (STC) tech-

niques have been proposed in the literature to exploit spatial diversity

in systems with multiple elements at both transmission and recep-

tion (see, for instance, [1, 2] and references therein). A remarkable

example is the Orthogonal Space Time Block Coding (O-STBC) be-

cause it is able to provide full diversity gain with linear decoding

complexity [3, 4]. The basic premise of O-STBC is the encoding of

the transmitting symbols into an unitary matrix to spatially decouple

their Maximum Likelihood (ML) detection, which can be seen as a

Matched Filter (MF) followed by a symbol-by-symbol detector.

In addressing the issue of decoding complexity, Alamouti has

proposed in [3] an O-STBC scheme for transmission in systems with

two antennas at the transmitter and only one at the receiver (see Fig-

ure 1). Each pair of symbols {s1, s2} is transmitted in two adjacent

periods using a simple strategy: in the first period s1 and s2 are

transmitted from the first and the second antenna, respectively, and

in the second period, −s∗2 is transmitted from the first antenna and

s∗1 from the second one. In this paper, we will consider that the ex-

act probability density function of si is unknown. We also assume

that they are complex-valued, zero-mean, stationary, non-Gaussian

distributed, statistically independent and have the same kurtosis.

The transmitted symbols (sources) arrive at the receiving an-

tenna through the fading paths h1 and h2, i.e., the signal received
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Fig. 1. Alamouti coding scheme

in the two adjacent periods have the form

x1 = s1 h1 + s2 h2 + n1

x2 = s
∗
1 h2 − s

∗
2 h1 + n2 (1)

where ni is additive white Gaussian noise. The observation vector

x = [x1 x∗
2]

T can be interpreted as an instantaneous mixture of the

transmitted symbols given by

x = H s + n (2)

where s = [s1 s2]
T is the source vector, n = [n1 n∗

2]
T is the noise

vector and H is the 2× 2 channel matrix,

H =

»
h1 h2

h∗
2 −h∗

1

–
(3)

It is interesting to note that H is an orthogonal matrix, H H
H =

H
H

H = ||h||2 I2 where ||h||2 = |h1|2 + |h2|2 is the squared

Euclidean norm, I2 is the 2×2 identity matrix and H is the Hermitian

operator. As a result, the transmitted symbols can be recovered using

ŝ = H
H

x.

The performance of system with the Alamouti coding scheme,

as most other coding strategies, depends on the accurate estimation

of the matrix channel H. The transmission of pilot symbols, referred

to as training symbols, is often used to perform channel estimation

required for a coherent detection of O-STBCs [5, 6]. However, train-

ing symbols reduce the throughput and such schemes are inadequate

when the bandwidth is scarce. Recently, it has been proposed sev-

eral strategies to avoid this limitations. One of the more popular is

the called Differential STBC (DSTBC) [7]. The price to paid is a

penalty of 3 dB as compared to the coherent ML receiver.

33291-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



Another class of methods to estimate the channel matrix con-

sists in using Blind Source Separation (BSS). In particular, this pa-

per focuses on higher-order eigen-based approaches like the pop-

ular method Joint Approximate Diagonalization of Eigenmatrices

(JADE) [8]. This algorithm provides excellent results but presents

a high computational load because several 4th-order cumulant [9]

matrices are simultaneously diagonalised. Recently, it has been pro-

posed other higher-order eigen-based approaches for the particu-

lar case of systems with O-STBC [10, 11]. The channel matrix is

estimated by performing only a 4th-order cumulant matrix eigen-

value decomposition. Unfortunately, although this approaches have

a reduced computational cost, their performance is considerably de-

graded for high SNRs.

In this paper we will show that the performance of eigen-based

approaches, like the presented in [10, 11], depends on the eigenvalue

spread. Using this result, in Section 2 we will propose a novel strat-

egy to estimate the channel matrix from only one 4th-order cumulant

matrix. Simulation results will be presented in Section 3. Finally,

Section 4 is devoted to the conclusions.

2. CHANNEL ESTIMATION USING 4TH-ORDER

CUMULANTS

2.1. Definitions

Let us start by defining the 4th-order cumulant matrix as

C[k, l] = c4(x,x
H

, xk, x
∗
l )

=

»
c4(x1, x

∗
1, xk, x∗

l ) c4(x1, x
∗
2, xk, x∗

l )
c4(x2, x

∗
1, xk, x∗

l ) c4(x2, x
∗
2, xk, x∗

l )

–
(4)

where the indices k, l denote time-slots (k, l ∈ {1, 2} for the Alam-

outi scheme) and the cumulant c4(x1, x2, x3, x4) is obtained from

the 2nd- and the 4th-order moments of the observations, it is

c4(x1, x2, x3, x4) = E[x1x2x3x4]− E[x1x2]E[x3x4] (5)

− E[x1x3]E[x2x4]− E[x1x4]E[x2x3]

Considering equation (2), in the appendix we show that these matri-

ces can be rewritten as

C[k, l] = c4(x,x
H

, xk, x
∗
l ) = ρ4 ·H ·Δ[k, l] ·HH

(6)

where ρ4 = c4(s1, s
∗
1, s1, s

∗
1) = c4(s2, s

∗
2, s2, s

∗
2) is the kurtosis

of the sources, and Δ[k, l] = diag(δ1, δ2) is a diagonal matrix. In

other words, the 4th-order cumulant matrices have the form

C[k, l] = ρ4 ·H ·Δ[k, l] ·HH

= ρ4 ·
»

h1 h2

h∗
2 −h∗

1

–
·

»
δ1 0
0 δ2

–
·

»
h∗

1 h2

h∗
2 −h1

–

= ρ4 ·
»

δ1|h1|2 + δ2|h2|2 (δ1 − δ2)h1h2

(δ1 − δ2)(h1h2)
∗ δ1|h2|2 + δ2|h1|2

–
(7)

In particular, the matrix C[1, 1] is obtained when δ1 = |h1|2 and

δ2 = |h2|2, matrix C[2, 2] corresponds to δ1 = |h2|2 and δ2 =
|h1|2 and C[1, 2] corresponds to δ1 = h1h2 and δ2 = −h1h2.

Furthermore, a linear combinations of matrices C[k, l], k, l = 1, 2
also can be written as equation (6).

2.2. Eigenvalue decomposition

Let C[k, l]i,j be the elements into the i-th row, j-th column of matrix

C[k, l]. The general method to compute the eigenvalues of C[k, l]
is

λi =
t±√t2 + 4d

2
, i = 1, 2 (8)

where t = C[k, l]1,1 + C[k, l]2,2 and d = C[k, l]2,1
C[k, l]1,2 −

C[k, l]1,1
C[k, l]2,2. The corresponding eigenvectors are

u
′
i =

"
C[k,l]1,2

λi−C[k,l]1,1

1

#
, ui =

u
′
i

||u′
i||

, i ∈ {1, 2} (9)

where ||u′
i|| is the Euclidean norm. For the particular case of the

matrix (7), we have

t = (δ1 + δ2)(|h1|2 + |h2|2) (10)

d = (δ1 − δ2)
2|h1|2|h2|2 − (δ1|h1|2 + δ2|h2|2)(δ1|h2|2 + δ2|h1|2)

= −δ1δ2(|h1|2 + |h2|2)2 (11)

Substituting in (8), the eigenvalue spread of matrix C[k, l] is given

by

L = |λ1 − λ2| = |
p

t2 + 4d|
= |

p
(δ1 + δ2)2(|h1|2 + |h2|2)2 − 4δ1δ2(|h1|2 + |h2|2)2|

= |
p

(δ1 − δ2)2(|h1|2 + |h2|2)2|
= |δ1 − δ2|(|h1|2 + |h2|2) (12)

Recall that the cumulant matrix C[1, 1] corresponds to δ1 = |h1|2
and δ2 = |h2|2, so, its eigenvalue spread is

L1 = |(|h1|2 − |h2|2)(|h1|2 + |h2|2)| = ||h1|4 − |h2|4| (13)

In the case of C[1, 2], we have δ1 = −δ2 = h1h2 and the eigenvalue

spread is

L2 = |(h1h2 + h1h2)(|h1|2 + |h2|2)| = 2|h1||h2|(|h1|2 + |h2|2)
(14)

2.3. Proposed approach

In order to estimate the channel matrix, we propose to compute the

eigenvectors of the 4th-order cumulant matrix with highest eigen-

value spread. The matrix, C[1, 1] or C[1, 2], is selected according

to the following decision criterion

L2

L1
=

2|h1||h2|(|h1|2 + |h2|2)
||h1|2 − |h2|2|(|h1|2 + |h2|2) =

2|h1||h2|
||h1|2 − |h2|2|

C[1, 1]
≶

C[1, 2]
1

From equations (16) and (18), showed in the appendix, we conclude

that this criterion can be implemented in the practice from 4th-order

cumulants,

L2

L1
=

|c4(x2, x
∗
2, x1, x

∗
1)|

|c4(x1, x∗
2, x1, x∗

1)|
=

2|h1|2|h2|2
||h1|2 − |h2|2||h1||h2|

=
2|h1||h2|

||h1|2 − |h2|2|
C[1, 1]

≶
C[1, 2]

1 (15)

Summarising, the method for Blind Channel Estimation based

on Eigenvalue Spread (BCEES) consists in performing the following

four steps:
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1. Compute C[1, 1]2,2 = c4(x2, x
∗
2, x1, x

∗
1) and C[1, 1]1,2 =

c4(x1, x
∗
2, x1, x

∗
1) from K samples of the observed signals

x1 and x2.

2. If
|C[1,1]2,2|

|C[1,1]1,2|
< 1, then compute the cumulant into C[1, 1]

using (16) from K samples of the observed signals:

C[1, 1]1,1 = c4(x1, x
∗
1, x1, x

∗
1)

Note that the 4th-order cumulant C[1, 1]2,1 = (C[1, 1]1,2)∗

has been computed in step 1.

Else, compute the cumulants into C[1, 2] using (18) from K

samples of the observed signals:

C[1, 2]1,2 = c4(x1, x
∗
2, x1, x

∗
2),

C[1, 2]2,2 = c4(x2, x
∗
2, x1, x

∗
2)

Note that the 4th-order cumulants C[1, 2]1,1 = C[1, 1]1,2

and C[1, 2]2,1 = C[1, 1]2,2 have been computed in step 1.

3. Compute the eigenvalues using (8) and the eigenvectors using

(9).

4. The channel matrix is estimated by Ĥ = [u1 u2] and the

signals are recovered using ŝ = Ĥ
H
x.

3. SIMULATION RESULTS

This section presents the result of several simulations carried out to

compare the performance of several eigen-based algorithms:

• The method proposed in [10] which computes the eigende-

composition of matrix C[1, 1]. We will show that for some

channel distributions, the performance is improved by con-

sidering the matrix C[1, 2].

• The method proposed in [11] which computes the eigende-

composition of a linear combination of 4th-order cumulant

matrices: C[1, 1]−C[2, 2]

• The novel method BCEES proposed in Subsection 2.3.

• The JADE algorithm proposed in [8] based on diagonalising

simultaneously several 4th-order cumulant matrices. Since

the channel matrix is orthogonal, the whitening step has been

not considered in the code.

The experiments have been performed by simulating the transmis-

sion of QPSK signals coded with the Alamouti coding scheme over

Rayleigh-distributed channels. We assume that the channel remains

constant during the transmission of a block of K = 500 symbols.

The cumulants are calculated for each block by sample averaging

over the symbols. The performance has been measured in terms of

the Symbol Error Rate (SER) obtained by averaging the results for

1,000,000 independent realizations.

First, we will show the importance of selecting the 4th-order

cumulant matrix with highest eigenvalue spread. Figure 2 plots the

SER obtained by diagonalising only one matrix (C[1, 1] and C[1, 2])
versus its eigenvalue spread for a SNR of 10 dB. Note that both

methods provide a high SER for small values of the eigenvalue spread.

It is also apparent that better results are obtained by diagonalising

only C[1, 2].
Figure 3 shows the SER versus de SNR obtained with the eigen-

based approaches above described. For comparison purposes we

also present the SER obtained with Perfect Channel Side Informa-

tion (Perfect CSI). It can be seen that the worst performance is ob-

tained when the channel is estimated using only the 4th-order cumu-

lant matrix C[1, 1] or a linear combination of two matrices, C[1, 1]−

Approach Time (seconds)

Beres-Adve: C[1, 1] 3.5061

C[1, 2] 4.2775

C[1, 1]−C[2, 2] 4.6519

BCEES 4.5457

JADE 6.4483

Table 1. Time needed to process 104 packets of K = 500 symbols

C[2, 2]. Observe that the performance of this methods is improved

by considering C[1, 2] but, however, this approach presents a bad

performance of high SNRs. Note also that BCEES and JADE achieve

the optimum performance.

Finally, Table 1 shows the time needed to process 104 packets

by Matlab code running in a core of a PC with an Intel Core

2 Quad Q6600 2.4 GHz processor and 2 GB of RAM. It is ap-

parent the considerable difference between JADE and BCEES.

0 10 20 30 40 50 60
10

−3

10
−2

10
−1

10
0

eigenspread

S
E

R

SNR of 10 dB

Beres−Adve: C[1,1]
C[1,2]

Fig. 2. SER versus eigenvalue spread

4. CONCLUSION

This paper presents a novel blind channel estimation algorithm for

systems with the 2× 1 Alamouti space-time block coding. We show

that the 2 × 2 matrices containing 4th-order cumulants of the ob-

served signals can be decomposed in two matrices: the channel ma-

trix (eigenvectors) and a diagonal matrix (eigenvalues) whose inputs

depend on the channel realization. As a consequence, the channel

matrix can be obtained by performing an eigendecompostion of the

cumulant matrices. In order to estimate the channel, we have pro-

posed to diagonalise the 4th-order cumulant matrix with maximum

eigenvalue spread. Simulation results show that the novel approach

presents the same performance than JADE with lower computational

load.
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Appendix

For the 2× 1 Alamouti coding scheme, there are four different 4th-

order cumulant matrices given by

C[1, 1] =

»
c4(x1, x

∗
1, x1, x

∗
1) c4(x1, x

∗
2, x1, x

∗
1)

c4(x2, x
∗
1, x1, x

∗
1) c4(x2, x

∗
2, x1, x

∗
1)

–
(16)

= ρ4 ·
» |h1|4 + |h2|4 (|h1|2 − |h2|2)h1h2

(|h1|2 − |h2|2)(h1h2)
∗ 2|h1|2|h2|2

–

C[2, 2] =

»
c4(x1, x

∗
1, x2, x

∗
2) c4(x1, x

∗
2, x2, x

∗
2)

c4(x2, x
∗
1, x2, x

∗
2) c4(x2, x

∗
2, x2, x

∗
2)

–
(17)

= ρ4 ·
»

2|h1|2|h2|2 (|h2|2 − |h1|2)h1h2

(|h2|2 − |h1|2)(h1h2)
∗ |h1|4 + |h2|4

–

C[1, 2] =

»
c4(x1, x

∗
1, x1, x

∗
2) c4(x1, x

∗
2, x1, x

∗
2)

c4(x2, x
∗
1, x1, x

∗
2) c4(x2, x

∗
2, x1, x

∗
2)

–
(18)

= ρ4 ·
»

(|h1|2 − |h2|2)h1h2 2h2
1h

2
2

2|h1|2|h2|2 (|h2|2 − |h1|2)h1h2

–

and C[2, 1] = C[1, 2]H . In this appendix we show that these matri-

ces can be written as

C[k, l] = c4(x,x
H

, xk, x
∗
l ) = ρ4 ·H ·Δ[k, l] ·HH

(19)

From the signal model in equation (2), we obtain

C[k, l] = c4(x,x
H

, xk, x
∗
l ) = c4(Hs, s

H
H

H
, xk, x

∗
l )

= H · c4(s, s
H

, xk, x
∗
l ) ·HH

(20)

where

c4(s, s
H

, xk, x
∗
l ) =

»
c4(s1, s

∗
1, xk, x∗

l ) c4(s1, s
∗
2, xk, x∗

l )
c4(s2, s

∗
1, xk, x∗

l ) c4(s2, s
∗
2, xk, x∗

l )

–
(21)

Using the properties of the cumulants, we obtain that the non-zero

cumulants are

c4(s1, s
∗
1, xk, x

∗
l )

= c4(s1, s
∗
1,H

k,1
s1 + H

k,2
s2, (H

k,1)∗s∗1 + (Hl,2)∗s∗2)

= H
k,1(Hl,1)∗c4(s1, s

∗
1, s1, s

∗
1) = H

k,1(Hl,1)∗ρ4 (22)

c4(s2, s
∗
2, xk, x

∗
l )

= c4(s2, s
∗
2,H

k,1
s1 + H

k,2
s2, (H

k,1)∗s∗1 + (Hl,2)∗s∗2)

= H
k,2(Hl,2)∗ρ4 (23)

where H
k,l represents the elements in the k-th row, l-th column of

H. As a consequence,

c4(s, s
H

, xk, x
∗
l ) = ρ4 ·

»
H

k,1(Hl,1)∗ 0
0 H

k,2(Hl,2)∗

–
= ρ4 ·Δ[k, l] (24)
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