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ABSTRACT

A new algorithm for estimating the frequencies of the two-

dimensional (2-D) exponentials is presented. Via joint diago-

nalization of a set of matrices, the estimation of the automat-

ically paired 2-D frequency parameters are obtained. Hence

the proposed algorithm can avoid the computationally expen-

sive 2-D parameters pairing procedure. Simulation results

validate the high performance of the new algorithm.

Index Terms— Frequency estimation, two-dimensional

sinusoid, joint diagonalization, spatial smoothing, harmonic

retrieval.

1. INTRODUCTION

Two-dimensional (2-D) frequencies estimation has been one

of the central problems in many fields such as radar imaging,

medical imaging, feature extraction, array processing, and

wireless communications. The 2-D FFT method for 2-D fre-

quencies estimation is simple but it suffers from the Rayleigh

resolution limit. To improve the resolution, a variety of su-

perresolution techniques have been developed. The maxi-

mum likelihood (ML) method [1] requires multidimensional

searching in the parameter space and its computational load is

heavy. The 2-D MUSIC algorithm [2] searches for the peaks

of the 2-D orthogonality-measure spectrum to obtain the esti-

mates of the 2-D frequencies, so its computational complexity

is still high due to 2-D search. The matrix enhancement and

matrix pencil (MEMP) method in [3] can avoid any search

procedure and can solve the problem of multiple 2-D sinu-

soids sharing a same frequency component by utilizing an en-

hanced matrix instead of the original data matrix. However

it requires computationally expensive 2-D parameters pairing

procedure and the incorrect pairs are always obtained when

there are repeated frequencies.

In this paper, we develop a new 2-D frequency estimation

algorithm based on joint diagonalization. The joint diagonal-

ization method was firstly used for the 1-D frequency estima-

tion in [4]. Here we consider the more complicated case, i.e.
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we extend it to the 2-D case. By jointly diagonalizing a set

of matrices, the estimation of frequency parameter matrix is

obtained and the 2-D frequency pairs can be directly derived

from it. The main advantage of the proposed algorithm is that

additional 2-D parameters pairing can be avoided.

2. PROBLEM FORMULATION

Consider K superimposed 2-D complex-valued sinusoidal sig-

nals:

xm,n =
K∑

k=1

skexp(j2πf1km + j2πf2kn) + vm,n (1)

where xm,n represents the 2-D observed signal and m =
0, · · · , M − 1, n = 0, · · · , N − 1 with (M, N) being the

size of the observed data matrix. sk and {f1k, f2k} are the

amplitude and frequency pair of the kth signal respectively.

vm,n is assumed to be 2-D additive complex white noise with

variance σ2. The 2-D harmonic retrieval issue is to estimate

the frequency pairs {f1k, f2k} from the M×N observed data.

The matrix form of (1) can be written as

x̃ = Ãs + ṽ (2)

with the column-ordered vectors

x̃ =[x0,0, x1,0, · · · , xM−1,0, x0,1, · · · , xM−1,1,

· · · , x0,N−1, · · · , xM−1,N−1]T (3)

s = [s1, · · · , sK ]T (4)

Ã = [ã1, · · · , ãK ] (5)

where the superscript T denotes transpose and ṽ is the noise

term. The kth column of MN ×K matrix Ã is

ãk = [ 1, ej2πf1k , · · · , ej2π(M−1)f1k ,

ej2πf2k , · · · , ej2π(M−1)f1k+j2πf2k , · · · , (6)

ej2π(N−1)f2k , · · · , ej2π(M−1)f1k+j2π(N−1)f2k ]T .

One can find that the subspace method can not be directly

applied based on equation (2) because the full rank correlation

matrix of x̃ can not be constructed. In order to restore the

full rank of the correlation matrix we adopt the 2-D spatial

smoothing method which will be described in detail in the

following section.
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3. JOINT DIAGONALIZATION METHOD FOR 2-D
FREQUENCIES ESTIMATION

3.1. 2-D Spatial Smoothing

The concept of spatial smoothing was firstly used for estimat-

ing the direction-of-arrival of the coherent sources and it was

extended to two dimensions in [2]. As illustrated in Fig. 1, the

M × N observed data array can be partitioned into L over-

lapping subarrays with dimensions p1 × p2. Obviously the

number of the subarrays is

L = (M − p1 + 1)(N − p2 + 1). (7)

Denoting Xl as the data matrix of the lth subarray, the fol-

lowing pseudo code clearly depicts how to construct Xl.

l = 0;
for p = 0 : 1 : M − p1

for q = 0 : 1 : N − p2

l = l + 1;

Xl =

⎡
⎢⎢⎢⎣

xp,q · · · xp,q+p2−1

xp+1,q · · · xp+1,q+p2−1

...
. . .

...

xp+p1−1,q · · · xp+p1−1,q+p2−1

⎤
⎥⎥⎥⎦

end
end

(8)

Let xl denote the column-ordered vector of Xl, i.e.

xl = vec (Xl) (9)

where vec denotes concatenation of the columns of a matrix.

Then xl can be expressed as

xl = Asl + vl (10)

where

sl = [ej2πpf11+j2πqf21s1, · · · , ej2πpf1K+j2πqf2K sK ]T (11)

A = [a1, · · · ,aK ] (12)

and vl is the corresponding noise term. Notice that p1p2×K
matrix A is different from MN × K matrix Ã, and the kth

column of A is

ak = [ 1, ej2πf1k , · · · , ej2π(p1−1)f1k ,

ej2πf2k , · · · , ej2π(p1−1)f1k+j2πf2k , · · · , (13)

ej2π(p2−1)f2k , · · · , ej2π(p1−1)f1k+j2π(p2−1)f2k ]T .

Using 2-D spatial smoothing technique, the correlation

matrix does not suffer from the rank deficient even in the case

that there are multiple 2-D frequencies having a common 1-D

frequency component.

1 2p p

Subarray

origin M×N data matrix 

Fig. 1. The subarrays for 2-D spatial smoothing.

3.2. Eigen-Structure of the Observed Data

According to (10), the correlation matrix can be written as

Rx = E
{
xlxH

l

}
= ARsAH + σ2I (14)

where the superscript H denotes complex conjugate transpose

and Rs = E
{
slsH

l

}
with its rank being K. The eigenvalue

decomposition of Rx is given by

Rx = UsΛsUH
s + σ2UnUH

n (15)

where Λs = diag {λ1, · · · , λK} is a diagonal matrix con-

taining the K principal eigenvalues in descending order and

Us contains the corresponding orthonormal eigenvectors. Un

contains the p1p2 − K orthonormal eigenvectors that corre-

spond to the eigenvalue σ2. The range space of Us is called

signal subspace and its orthogonal complement, named noise

subspace, is spanned by Un.

Based on the L subarrays’ data, we can obtain the esti-

mation of correlation matrix without rank deficient. To im-

prove the accuracy of the frequency estimate, both forward

smoothing and backward smoothing are utilized. The forward

smoothed correlation matrix can be written as

R̂F =
1
L

L∑
l=1

xlxH
l (16)

and the backward smoothed correlation matrix is

R̂B = JR̂∗FJ (17)

where J is the exchange matrix (i.e. anti-identity matrix) and

the superscript ∗ denotes complex conjugate. The forward-

backward smoothed correlation matrix is the average of R̂F

and R̂B, i.e.

R̂FB =
1
2

(
R̂F + R̂B

)
. (18)
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Here we use R̂FB as the estimate of the true correlation

matrix Rx.

3.3. 2-D Frequencies Estimation via Joint Diagonaliza-
tion

It is easy to see that A and Us span the same range space,

therefore there exists a K × K nonsingular matrix W satis-

fying

A = UsW. (19)

Since the estimation of signal subspace Ûs can be calcu-

lated from R̂FB, the estimation of frequency matrix Â can

be obtained if we find the matrix W. Based on the analytic

constant modulus algorithm (ACMA) [5], we can derive an

efficient method for seeking W. Denote by uH
m the mth row

of Us and wk the mth column of W, then

ak = Uswk =

⎡
⎢⎢⎢⎣

uH
1 wk

uH
2 wk

...

uH
p1p2

wk

⎤
⎥⎥⎥⎦ , k = 1, · · · , K (20)

All the elements of ak have unit modulus, hence

∣∣uH
mwk

∣∣2 = wH
k umuH

mwk = 1, m = 1, · · · , p1p2. (21)

Equation (21) can be also written as

vecT
(
umuH

m

)
(wk ⊗w∗k) = 1 (22)

where⊗ denotes Kronecker product. Define a p1p2×K2 ma-

trix P whose mth row is vecT
(
umuH

m

)
, then we can obtain

the matrix form of (22)

P (wk ⊗w∗k) = 1 (23)

where 1 = [1, · · · , 1]T . Define a Householder transformation

matrix

H = I− 2
qqT

qT q
, q = 1− ‖1‖ e1 (24)

where e1 = [1, 0, · · · , 0]T . Left multiplying both sides of

(23) by H leads to

HP (wk ⊗w∗k) = ‖1‖ e1 (25)

The matrix HP with the first row deleted is defined as a new

(p1p2 − 1)×K2 matrix Q, therefore we obtain

Q (wk ⊗w∗k) = 0. (26)

Equation (26) means that wk ⊗ w∗k (k = 1, · · · , K) be-

longs to the null space of Q. Each base vector of the null

space of Q, notated by yi (i = 1, · · · , K), can be expressed

as a linear combination of the vectors {wk ⊗w∗k}K
k=1

yi =
K∑

k=1

cki (wk ⊗w∗k) =
K∑

k=1

ckivec
(
w∗kw

T
k

)
. (27)

Define K ×K matrix Yi = unvec(yi) with unvec denoting

the inverse vec operation, then we have

Yi =
K∑

k=1

cki

(
w∗kw

T
k

)
= W∗CiWT , i = 1, · · · , K (28)

where Ci = diag{c1i, · · · , cKi} is a diagonal matrix. Equa-

tion (28) is interesting and important since it indicates that we

can jointly diagonalize the set of matrices {Y1,Y2, · · · ,YK}
to find W. In other words, W is a joint diagonalizer of the

set of matrices. Recently, a fast approximate joint diagonal-

ization (FAJD) algorithm [6] has been proposed for avoiding

not only the trivial solution but also any degenerate solutions.

The FAJD algorithm minimizes the cost function

J(W) =
K∑

k=1

∥∥off
(
WHYkW

)∥∥2

F
− βlog |det(W)| (29)

where det(·) denotes the determinant of squared matrix, and

off(·) zeros the diagonal elements of a matrix. The first term

of the cost function is the squared off-diagonal error and the

minus determinant term can avoid the trivial solution and any

degenerate solutions. Note that the performance of equation

(29) is independent of the choice of positive weight β in the

sense that related minimal solutions with different β only dif-

fer by a scalar [6], therefore a simple choice of β is β = 1.

More details about FAJD algorithm can be found in [6].

Once we obtain W, the frequency parameter matrix can

be estimated using Â = ÛsW, i.e. the estimation of each

column vector âk (k = 1, · · · , K) is obtained.

It is easy to extract the 2-D frequency pair {f1k, f2k} from

the estimated vector âk. Firstly the p1p2 × 1 vector âk is

converted into the p1 × p2 matrix Âk shown in equation (30)

which can be found in the top of the next page.

According to equation (30), the estimation of the first com-

ponent f̂1k can be derived from the phase difference between

the consecutive elements of any column of Âk, and the sec-

ond component f̂2k can be derived from the phase difference

between the consecutive elements of any row of Âk. We can

adopt the average of the multiple estimation results as the final

estimation for improving the accuracy.

Note that the 2-D frequencies are automatically paired,

therefore the proposed algorithm can avoid 2-D parameter

pairing.

4. SIMULATION RESULTS

We consider a typical simulation example adopted in many

literatures such as [3][7]. There are three 2-D harmonics

with frequency pairs (f11, f12) = (0.26, 0.24) , (f21, f22) =
(0.24, 0.24) , and (f31, f32) = (0.24, 0.26). The sizes of the

observed data and the subarray are set to (M, N) = (20, 20)
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Âk = unvec (âk) =

⎡
⎢⎢⎢⎢⎣

1 ej2πf̂2k · · · ej2π(p2−1)f̂2k

ej2πf̂1k ej2π(f̂1k+f̂2k) · · · ej2π(f̂1k+(p2−1)f̂2k)

...
...

. . .
...

ej2π(p1−1)f̂1k ej2π((p1−1)f̂1k+f̂2k) · · · ej2π((p1−1)f̂1k+(p2−1)f̂2k)

⎤
⎥⎥⎥⎥⎦ (30)

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27
0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

f1

f2

Estimation results of MEMP

wrong pairing

Fig. 2. Two hundred independent estimates of three 2-D fre-

quencies using MEMP method.

and (p1, p2) = (10, 10), respectively. The signal-to-noise ra-

tio (SNR) is defined by

SNR = 10 log
(

1
σ2

)
. (31)

Figs. 2 and 3 illustrate the estimated frequencies for 200

Monte Carlo runs at SNR=15 dB using the MEMP method

and the proposed algorithm, respectively. One can see that

the wrong pair (0.26, 0.26) was obtained using the MEMP

method. The proposed algorithm never experienced such a

problem since the two components of the frequency pairs were

obtained simultaneously without any additional pairing pro-

cedure. In addition, the frequency estimations obtained by the

new algorithm are more accurate than the MEMP method.

5. CONCLUSION

Based on joint diagonalization we develop a new algorithm

for 2-D frequency estimation. The estimates of the 2-D fre-

quencies are obtained without 2-D parameter paring by jointly

diagonalizing a set of matrices. By avoiding any computa-

tionally demanding search in the parameter space, the pro-

posed algorithm reduces greatly the computational complex-

ity. Simulation results demonstrate that the proposed algo-

rithm outperforms the MEMP method.

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27
0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

f1
f2

Estimation results of the proposed method

Fig. 3. Two hundred independent estimates of three 2-D fre-

quencies using the proposed method.
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