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ABSTRACT

Principal component analysis (PCA) is probably the best known method
for dimensionality reduction. Perhaps the most important problem
in PCA is to determine the number of principal components in a
given data set, and in effect separate signal from noise in the data
set. Many methods have been proposed to deal with this problem
but almost all of them fail in the important practical case when the
number of observations is comparable to the number of variables,
i.e., the realm of Random Matrix Theory (RMT). In this paper, we
propose to use Stein’s Unbiased Risk Estimator (SURE) to estimate,
with some assistance from RMT, the number of principal compo-
nents. The method is applied on simulated data and compared to
BIC and the Laplace method.

Index Terms— Principal component analysis, Stein’s Unbiased
Risk Estimator (SURE), Random matrix theory, model order selec-
tion.

1. INTRODUCTION

A central problem in the study of high dimensional data of T ob-
servations on M variables is dimensionality reduction. Its aim is to
separate signal from the noise such that the signal is captured in a
few leading functionals of the data and the noise in the rest. The
noise can then be discarded leaving us with a smaller data set of
higher signal content.

The best known method for this purpose is probably Principal
Component Analysis (PCA) [1]. PCA is based on linear combi-
nations of the data while newer methods such as kernel PCA use
nonlinear functionals. However, PCA remains the most widely used
dimensional reduction method. The applications for PCA in signal
and image processing are wide ranging, e.g., data compression, de-
noising, and as a preprocessing step for various kinds of algorithms.

Although PCA is commonly viewed as an exploratory technique,
there is in fact an underlying model behind PCA [2], which we call
noisy PCA (nPCA), where the nPCs can be derived by the maxi-
mum likelihood method. This gives the researcher access to clas-
sical model selection methods based on information criterion such
as AIC, BIC (see [3] and references therein). These methods were
developed for the data rich case T >> M so there is no guarantee
that they will perform well on other cases.

Modern data sets are often very high dimensional with M on
the order of hundreds or thousands and T and M of comparable
sizes. Examples include: Meteorology and Oceanography [4], func-
tional data analysis [5], and medical imaging [6]. The reference
[7] develops a Bayesian model selection method, which we call the
Laplace method, based on the Laplace approximation, and shows
that it performs very well in cases where T andM are of comparable
sizes. Furthermore, in simulations, it compares well against cross-
validation, and other similar Bayesian methods [7]. Reference [8]

employs the Laplace criterion for functional Magnetic Resonance
Imaging (fMRI) data, in addition, it makes use of Random Matrix
Theory (RMT) to modify it. Other methods include [9].

In this paper we propose to use Stein’s Unbiased Risk Estimator
(SURE) [10] to choose the number of nPCs. SURE was originally
not designed for model selection, but following [11, 12] the second
author realized [13] that it could be used as a general purpose tool
for tuning parameter selection in non-linear ill-conditioned inverse
problems.

The advantages of our SURE based selection method are: 1) it
is computationally simple, i.e., does not require much more compu-
tation than that needed to obtain the PCs, 2) it has an unbiasedness
property even for non-linear problems 3) it is exact, i.e., no approxi-
mations are needed. To implement SURE in practice it is necessary
to estimate a noise variance and we develop a novel method based
on RMT to do that.

This paper is organized as follows: In Section 2, we discuss
nPCA. In Section 3, we derive SURE for PCA and discuss BIC and
the Laplace method. Section 4 discusses estimation methods for the
noise variance based on RMT. Section 5 presents simulation results.
Finally, in Section 6, conclusions are drawn.

For easy reference, we list notations used in this paper. An esti-
mate of θ is denoted by θ̂; γ = T/M is the ratio of the number of
observation to the number of variables; I(x) = 1, if x ∈ S, zero
otherwise; a.s. means almost surely; ‖x‖2 =

Pn
i=1 x2

i ; E denotes
the expectation operator.

2. NOISY PCA

The nPCA model is given by

yt = μt + εt (1)
= m + Gut + εt, t = 1, ..., T

where yt is a M × 1 data vector, m is the mean vector, G =
(g1, g2, ..., gr) is an M × r loading matrix, ut ∼ N(0, Ir) is a r
vector of nPCs, εt ∼ N(0, σ2IM ) is white noise, and εt, ut are
mutually independent. The problem at hand is to estimate θ =
(m,G, σ2).

The log-likelihood is given by

lθ(y) = −
T

2
tr(SyΩ−1)−

T

2
log |Ω|

where Ω = GGT + σ2IM and Sy = 1
T

PT
t=1(yt − ȳ)(yt − ȳ)T .

The maximum likelihood estimators are [2, 14]

m̂ = ȳ

Ĝ = P (L− σ̂2
rIr)

1/2R

σ̂2
r =

1

M − r

MX

j=r+1

lj . (2)
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HereR is an arbitrary orthonormal rotationmatrix,L = diag(l1, ..., lr),
where l1 > l2 >, ..., > lr, contains the r largest eigenvalues of the
data covariance matrix Sy , where the columns of P = [p1, ..., pr]
are the corresponding eigenvectors, so SyP = PL. The reference
[14] proved that the ML estimates are the global optimizers of the
likelihood, this was rediscovered by [15].

For given data and the ML estimate of θ, the estimated nPCs and
their corresponding variances are given by

ût = Eθ̂(ut|yt) = W−1ĜT (yt − ȳ)

V = varθ̂(ut|yt) = σ̂2
rW−1

W = ĜT Ĝ + σ̂2
rIr.

The estimate for μt in Equation (1) is given by

μ̂t = Ĝût = ȳ +

rX

j=1

pj
lj − σ̂2

r

lj
pT

j (yt − ȳ). (3)

This is a nonlinear function in yt.

3. RANK SELECTION

In this section, we first review the Laplace and the BIC methods and
then introduce our SURE method. We chose the Laplace method
since in [7] it was easily the best performing method among a num-
ber of methods designed for the low sample case. BIC is chosen as
a surrogate for all methods that assume a large sample framework.

3.1. The Laplace and the BIC Methods

The Laplace method is derived from a Bayesian framework and is
based on maximizing the evidence that the nPCA model consists
of r PCs. The reference [7] approximated the evidence using the
Laplace method yielding

− log p(y|r) = −lθ̂(y)− log p(P )−
d + r

2
log 2π

+
1

2
log |Az|+

r

2
log T

where d = Mr − r(r + 1)/2 and

p(P ) = 2−r
rY

i=1

Γ((M − i + 1)/2)π−(M−i+1)/2

|Az| =
rY

i=1

MY

j=i+1

T (l̃−1
j − l̃−1

i )(li − lj)

where p(P ) is a noninformative prior distribution for P , l̃j is equal
to lj when j ≤ r and equal to σ̂2

r when j > r, and

−lθ̂(y) =
T

2

rX

j=1

log lj +
T

2
(M − r) log σ̂2

r .

The r that minimizes − log p(y|r) is picked as the number of nPCs.
The BIC criterion can be thought as an approximation of the Laplace
criterion by dropping all terms in it that do not grow with T [16]
giving

BICr = −lθ̂(y) +
1

2
(d + r) log T.

The r that minimizes the BIC is chosen as the number of nPCs.

3.2. SURE

The proposed SURE based method is based on the following con-
siderations. Ideally, we would like to choose the value of r that
minimizes the risk

Rr =
1

T

TX

t=1

E‖μt − μ̂t‖
2

where μt is the true signal and μ̂t is an estimate of μt for a known
value of r. We generally do not know the true signal μt so we cannot
compute the risk. But the idea is to try to find a computable unbiased
estimator of it and minimize that instead. Indeed, remarkably Stein
[10] showed how to construct such an estimator under Gaussian as-
sumptions. SURE is given by

R̂r =
1

T

TX

t=1

‖nt‖
2 + 2σ2 1

T

TX

t=1

tr( ∂μ̂t

∂yT
t

)−Mσ2

where our estimator of μt is given by Equation (3), and nt = yt−μ̂t.
The idea behind SURE as a tuning parameter selector is that [13]
since it is an unbiased estimator of the risk then on average one can
hope that its minimizer is an unbiased estimator of the minimizer of
the risk.

It can be shown that

R̂r = (M − r)σ̂2
r + σ̂4

r

rX

j=1

1

lj
+ 2σ2r

− 2σ2σ̂2
r

rX

j=1

1

lj
+

4σ2σ̂2
r

T

rX

j=1

1

lj
+ C (4)

C =
4σ2

T

rX

j=1

MX

i=r+1

lj − σ̂2
r

lj − li
+

2σ2

T
r(r − 1)

−
2σ2

T
(M − 1)

rX

j=1

(1−
σ̂2

r

lj
).

Note that the noise variance σ2 is assumed known in the SURE
formula. A natural choice for it is σ̂2

r but that does not work in this
case. Finding a reliable estimator for σ2 turns out to be a non-trivial
issue which we now pursue.

4. ESTIMATION OF σ2 VIA RMT

We seek an estimator of σ2 that does not require a good estimate
of r. First, write the loading matrix in terms of its SVD, i.e., G =
FΛRT . Then spectral decompose the covariance, i.e., Ω = F (Λ−
σ2Ir)F

T + σ2F⊥F T
⊥ where F⊥ is orthogonal to F and of rank

M − r. This shows that the eigenvalue spectrum consists of r signal
eigenvalues equal to λj−σ2, j = 1, ..., r, andM−r noise eigenval-
ues all equal to σ2. A simple idea is to use a sample noise eigenvalue
of Sy as an estimate for σ2, but it does not work well. Our idea is to
correct the sample eigenvalues by ’flattening’ the Empirical Distri-
bution Function (EDF) of the sample eigenvalues using results from
RMT and use a corrected sample noise eigenvalue as an estimate for
σ2. Now we discuss RMT

4.1. RandomMatrix Theory

RMT is defined by a scenario in which T → ∞, M → ∞ while
T/M = γ �= 0, γ < ∞. This differs from the classical PCA
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asymptotic where M is fixed and T → ∞ [17]. In this RMT case
the eigenvalues of the sample covariance matrix do not converge in
probability to the true values. Rather the empirical distribution con-
verges to a limit called the Marchenko-Pastur (MP) distribution and
is described in a seminal paper [18].

Theorem 1 Given a T ×M data matrix Y with independent zero
mean and unit variance entries. If T, M → ∞, such that T/M →
γ ≥ 1, and γ < ∞. Then the EDF

F̂γ(x) =
1

M

MX

i=1

I(lM−i+1 ≤ x) (5)

of the eigenvalues associated with the covariance matrix Sy con-
verges a.s. to the MP distribution

F̂γ(x)→ Fγ(x).

The associated MP density is given by

fγ(x) = F ′γ(x) =
γ

2πx

p
(b− x)(x− a), a ≤ x ≤ b

where a = (1− γ−1/2)2 and b = (1 + γ−1/2)2.

Although this result is stated for the case where T andM go to
infinity in fixed ratio there is empirical evidence [19, 20] that it is
a good approximation for very low values of T and M , e.g., T =
M = 10. For the case of non-unit noise variance σ2 the distribution
simply scales up and is given by Fγ(σ2x) [21].

The case of nPCA where there are few leading signal eigenval-
ues and many equal valued noise eigenvalues is called the spiked
model [19], i.e., noise model spiked with few significant eigenval-
ues. It has long been known that the MP result still holds [18] for
this case, except that there may be some eigenvalues outside the MP
support. Two recent papers [22, 23] give theoretical discussion of
the asymptotic behavior of those eigenvalues.

4.2. Noise Variance σ2 Estimation Method

The spiked model and the scaling property of the MP distribution
lead to the following idea for estimating the noise variance. Given a
sample covariance matrix Sy with eigenvalues l1 > l2 >, ..., > lM .

1. Compute the corrected eigenvalues

l̃
(1)
j =

lj

F−1
γ (F̂γ(lj))

=
lj

F−1
γ (M−j+1

M
)
, j = 1, ..., M.

where F−1
γ is the quantile function associated with Fγ , and

F̂γ is the EDF given in Equation (5). For sample noise eigen-
values we expect that F̂γ(lj) ≈ Fγ(

lj
σ2 ) so l̃

(1)
j ≈ σ2.

2. A rough estimate of σ2 is given by one of the corrected sam-
ple noise eigenvalues, e.g., σ̃2 = 25th percentile of l̃(1).

3. Normalize the eigenvalues l̃j =
lj
σ̃2 , j = 1, ..., M.

4. Get a crude estimate of the number of signal eigenvalues us-
ing the upper support limit of the MP density

r = argmin(l̃(1)j − b), l̃
(1)
j − b > 0.
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Fig. 1. Simulation: Scree Plots

5. Construct the EDF for the sample noise eigenvalues

F̃γ(x) =
1

M − r

MX

i=r+1

I(lM−i+1 ≤ x).

6. Recompute the corrected eigenvalue

l̃
(2)
j =

lj

F−1
γ (F̃γ(lj))

=
lj

F−1
γ (M−j+1

M−r
)
, j = r + 1, ..., M.

7. The final estimate of the noise variance is given by one of the
corrected sample noise eigenvalues, e.g., σ̂2 = 25th percentile of l̃(2).

Notice that this noise variance estimation method also includes a
crude estimate for r. This method is far from competitive with SURE
but helps provide a good estimate for σ2. In steps 2 and 7 we choose
the 25th percentile of the corrected eigenvalues as an estimate for the
noise variance. There is nothing special about the 25th percentile,
we could have chosen the 30th percentile or the median instead, like
Fig. 1(b) below illustrates.

5. SIMULATION

In this section ,we present a simulation study, where we compare
the SURE with the Laplace method, and BIC. The BIC and Laplace
methods were implemented using formulas from Section 3. We sim-
ulated the data according to Equation (1), with the following param-
eters: M = 64, T = [96, 128], λ = l−σ2 = [(r+1)2, r2, ..., 32, 2]
,r = [5, 10, 15, 30], and σ2 = 1.

The loading matrixGwas simulated by generatingM×rmatrix
of unit variance Gaussian random variables. It was then orthonor-
malized (R = Ir). All simulations were repeated Nrep = 1500
times, and it was recorded how many times each method choose the
correct dimensionality. This number is binomially distributed ran-
dom variable with parameters Nrep and p which is the classification
probability.

Fig. 1(a) shows a sample Scree plot (sample eigenvalues plotted
in decreasing order) from one of the replicates, the noise variance
level σ2 is indicated by a horizontal line. Fig. 1(b) shows the corre-
sponding corrected Scree plot. The noise eigenvalues fall nicely on
the horizontal noise variance line, so almost any of them could be
used as an estimate for σ2.

Table 1 shows the percentage of correct selection of PCs for
SURE, Laplace, and BIC methods. The bold face entries indicate
which method performs best according to the 95% significant level.
It can be seen that SURE performs best in almost all of the cases,
sometimes by a wide margin. BIC does not perform well in any of
the cases presented, which is not surprising since BIC is based on
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Fig. 2. Simulation: Histogram of number of PCs, where r =
10, T = 96. First column is SURE, second is Laplace, and third
is BIC.

Table 1. The percentage of correct selection. Bold face entries rep-
resent the best performing method.

T = 96 T = 128

r SURE Laplace BIC SURE Laplace BIC

5 0.671 0.661 0 0.886 0.899 0
10 0.718 0.571 0 0.901 0.883 0.005
15 0.775 0.498 0.010 0.930 0.840 0.022
30 0.825 0.353 0.185 0.956 0.833 0.299

an asymptotic argument which does not hold. Finally, Fig. 2 shows
a histogram of the number of PC chosen by the considered methods
for r = 10, and T = 96.

6. CONCLUSION

In this paper, we have applied the nonlinear SURE technique to the
problem of rank selection in nPCA where data and variable dimen-
sion are in the realm of RMT. This scenario causes significant prob-
lems for most other selection methods. For practical use it is neces-
sary to estimate the noise variance and we have developed a reliable
estimator based on RMT. In simulations, we have shown that BIC
(and methods like it) fail badly and that our new method outperforms
the Laplace method.
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