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ABSTRACT
The concept of tensor rank, introduced in the twenties, has
been popularized at the beginning of the seventies. This has
allowed to carry out Factor Analysis on arrays with more than
two indices. The generic rank may be seen as an upper bound
to the number of factors that can be extracted from a given
tensor, with certain uniqueness conditions. We explain how
to obtain numerically the generic rank of tensors of arbitrary
dimensions, and compare it with the rare algebraic results al-
ready known at order three. In particular, we examine the
cases of symmetric tensors, tensors with symmetric matrix
slices, or tensors with free entries. Related applications in-
clude antenna array processing.

Index Terms— Tensor, Generic rank, Canonical Decom-
position, Factor Analysis, Parafac, Antenna arrays

1. INTRODUCTION

Generic ranks, defined in the complex field C, have been stud-
ied for several decades [8] [13]. However, the value of the
generic rank for arbitrary dimensions is not yet known in the
unsymmetric case, and has been known in the symmetric case
only recently [4] [3]. The typical rank of three-way arrays
over the real field has been relevant for psychological data
analysis since Carroll and Chang [1] and Harshman [7] in-
dependently proposed a method which they christened CAN-
DECOMP and PARAFAC, respectively. The rank of a three-
way array is the maximum number of components that CAND
can extract uniquely up to scale and permutation indetermi-
nacies. Thus, the study of typical rank of three-way arrays is
of great theoretical importance for CAND. Although CAND
was developed in a psychometric environment, its main area
of applications has been Chemometrics, e.g. [12]. Besides,
CAND has found important applications in signal processing,
especially in Independent Component Analysis [6] [2] and in
multi-user access in wireless communications [10] [11].

2. GENERIC AND TYPICAL RANKS

Let T be a L-way array of dimensions N�, 1 ≤ � ≤ L, with
values in a ring R. This array always admits a decomposition
into a sum of outer products as:

T =
R∑

r=1

u(1)
r ◦u(2)

r ◦ . . .◦u(L)
r (1)
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where u
(�)
r is a vector of dimension N�, ∀r, and ◦ denotes the

tensor product.
Now consider an array T with values in a field K. Ar-

rays u
(�)
r may be considered as vectors of the linear space

K
N� . Thus, as a combination of tensor products of vectors,

T may be considered as a tensor. Under a linear change of

coordinate system in each space K
N� , defined by a matrix

A(�), the tensor is represented by another array, obtained by

the multi-linear transform {A(1), A(2), . . . ,A(L)}. Since it
is legitimate once a basis has been defined in the space, no
distinction will be made in the remainder between the tensor
and its array representation.

The rank of a given tensor T (and by extension, of the
array defining its coordinates in a given basis) is the minimal
integer R such that the decomposition (1) is exactly satisfied.
Here this decomposition is referred to as the tensor Canonical
Decomposition (CAND).

A property is called typical if it holds true on a set of
nonzero volume [3] [4] [9] [15]. This supposes that some

topology has been defined on K
N1×N2×...NL ; this can be the

Zariski topology for instance, or an Euclidian topology. A
property is said to be generic if it is true almost everywhere.
In other words, a generic property is typical, but the converse
is not true.

Let N1, . . . , NL be given positive integers. Then the rank
of tensors of size N1 × N2 × · · · × NL is bounded, and one
can make a partition of the tensor space, according to the rank
values. One can define typical ranks as the ranks that are as-
sociated with subsets of nonzero volume in the latter parti-
tion. If there is a single typical rank, then it may be called
the generic rank. For instance, there is a single generic rank
if the underlying field K is algebraically closed (as the field
of complex numbers, C) [13] [3]. But there may be several
typical ranks if K is the real field, R.

3. COMPUTATION OF GENERIC RANKS

The algorithm proposed is directly inspired by [4]. Equation
(1) can be seen as a parametrization of tensor T . In fact,

given a set of vectors {u(�)
r ∈ K

N� , 1 ≤ � ≤ L, 1 ≤ r},
consider the mapping ϕ defined from a known subspace TR

of (KN1 × K
N2 × · · · × K

NL)R onto K
N1 N2... NL as:

{u(�)
r ∈ TR, 1 ≤ r ≤ R} →

R∑
r=1

u(1)
r ◦u(2)

r ◦ . . .◦u(L)
r
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Denote ZR = ϕ(TR) the image of this mapping. Then the
dimension D of its closure Z̄R is given by the rank of the Ja-

cobian of ϕ, expressed in any fixed basis of K
N1 N2... NL . If

the Jacobian is of maximal rank, that is, if its rank equals the
dimension of the image space (e.g. N1N2 . . . NL for uncon-
strained arrays), then it means that R is a typical rank. Actu-
ally, R will be either the smallest typical rank, or the generic
rank. Note that it is always possible to reach the maximal Ja-
cobian rank by increasing the number of terms R, so that the
smallest typical rank is always found.

This result yields the following numerical algorithm:
• Express formally the parametrized rank-one tensor term in
a canonical basis
• Express formally the gradient of the latter in this basis
• Draw randomly the parameters according to an absolutely
continuous distribution, and initialize matrix J with the nu-
merical value of the gradient, and set R = 1
• While rank(J) strictly increases, do:

- Draw randomly the parameters according to an abso-
lutely continuous distribution, and append this new numerical
value of the gradient as a new row block in J

- Compute the new value of D = rank(J)
- R ← R + 1

• Compute the dimension of the fiber of solutions as F =
M − D, the difference between the number of parameters
and the dimension of the image Z̄R.

In order to clarify the description of this algorithm, we
give now the exact expressions of the Jacobian in various
cases.

3.1. Jacobian for 3rd order asymmetric tensors with free
entries

The mapping takes the form below

{a(r), b(r), c(r)} ϕ−→ T =
R∑

r=1

a(r)◦ b(r)◦ c(r)

Taking into account the presence of redundancies, the number
of parameters in this parametrization is M = R(N1 + N2 +
N3 − 2). In a canonical basis, T has the coordinate vector:

R∑
r=1

a(r) ⊗ b(r) ⊗ c(r)

where we may decide that a(r), b(r), and c(r) are row arrays
of dimension N1, N2, and N3, respectively, and ⊗ denotes the
Kronecker product. Hence, after R iterations, the Jacobian of
ϕ is the R(N1 + N2 + N3) × N1N2N3 matrix J , whose rth
row block is: [

IN1 ⊗ b(r) ⊗ c(r)
a(r) ⊗ IN2 ⊗ c(r)
a(r) ⊗ b(r) ⊗ IN3

]
(2)

The values of the generic rank obtained with this algorithm,
called rangj3(N1,N2,N3), or rangj(N,L)1 for tensors
of arbitrary order L and equal dimensions, are reported in ta-
bles 1, 2, and 3.

1Corresponding Matlab and Scilab codes can be downloaded from
www.i3s.unice.fr/∼pcomon.

3.2. Jacobian for 3rd order asymmetric tensors with sym-
metric matrix slices

In this section, we consider tensors of size N2 × N2 × N3,
having symmetric N2×N2 matrix slices, hence the mapping:

{b(r), c(r)} −→ T =
R∑

r=1

b(r)◦ b(r)◦ c(r).

Our code rgindscal3(N2,N3) implements the computa-
tion of the rank of the Jacobian J , whose rth row block is
given below, when its size increases according to the algo-
rithm described in section 3:[

IN2 ⊗ b(r) ⊗ c(r) + b(r) ⊗ IN2 ⊗ c(r)
b(r) ⊗ b(r) ⊗ IN3

]
(3)

After R iterations, this matrix is of size R(N2+N3)×N2
2 N3.

The number of parameters in this parametrization is M =
R(N2 + N3 − 1). Values of the generic rank are reported in
table 4.

3.3. Jacobian for 3rd order double centered tensors with
symmetric matrix slices

Now, take again N2 ×N2 ×N3 tensors with symmetric N2 ×
N2 matrix slices, but assume in addition that every row and
column in the latter matrix slices are zero-mean. In order to
achieve this, it is sufficient to generate vectors b(r) with zero
mean [5]; in other words, only N2 − 1 random numbers need
to be drawn, the last entry of each vector b(r) being obtained

via bN2 = −∑N2−1
n2=1 bn2 . The Jacobian is then built from R

row blocks of the form[
[IN2−1, −1] ⊗ b(r) ⊗ c(r) + b(r) ⊗ [IN2−1, −1] ⊗ c(r)

b(r) ⊗ b(r) ⊗ IN3

]
(4)

where 1 denotes a column of ones of size N2 − 1. At the Rth
iteration, this matrix is of size R(N2 + N3 − 1) × N2

2 N3.
The number of parameters in this parametrization is M =
R(N2 + N3 − 2). Table 5 reports some numerical values
obtained with the code rgindscal2z.

3.4. Jacobian for 3rd order tensors with double centered
matrix slices

The previous reasoning can be applied to N1 ×N2 ×N3 ten-
sors with no symmetry constraint and whose N1 ×N2 matrix
slices have zero-mean rows and column. As before, it is suf-
ficient to generate vectors a(r) and b(r) with zero mean. The
Jacobian is then composed of row blocks of the form::[ [IN1−1, −1] ⊗ b(r) ⊗ c(r)

a(r) ⊗ [IN2−1, −1] ⊗ c(r)
a(r) ⊗ b(r) ⊗ IN3

]
(5)

At the Rth iteration, this matrix is of size R(N1 + N2 +
N3 − 2) × N1N2N3. The number of parameters in this
parametrization is M = R(N1 + N2 + N3 − 3). The nu-
merical values obtained with the code rangj3z are not re-
ported, since we always have, for any triplet (N1, N2, N3):
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rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3). In
other words, as far as the generic rank is concerned, centering
in a given mode of dimension Ni yields the same effect as
reducing the dimension to Ni − 1, which makes sense.

3.5. Jacobian for symmetric tensors

In the case of symmetric tensors of dimension N and order L,

the mapping ϕ is defined from K
NR to the space of symmetric

tensors [4], or equivalently to K
p with p =

(
N+L−1

L

)
, as:

{a(r) ∈ K
N , 1 ≤ r ≤ R} ϕ−→

R∑
r=1

a(r)◦L

where ◦ stands for the tensor (outer) product; once a basis is
chosen, the tensor product may be replaced by a Kronecker
product, yielding exactly the same expression. In the case of
order-3 tensors (L = 3) and after R iterations, the Jacobian
of ϕ R blocks of the following form, somewhat simpler than
the previous cases:

IN⊗a(r)⊗a(r)+a(r)⊗IN⊗a(r)+a(r)⊗a(r)⊗IN (6)

This matrix is of size RN × N3, but we know that its rank
cannot exceed

(
N+2

3

)
= N(N +1)(N +2)/6. The number of

parameters in this parametrization is M = RN . Numerical
values of the generic rank obtained with rangjs(N,L) are
reported in table 6.

N3 2 3 4
N2 2 3 4 5 3 4 5 4 5
N1

2 2,3 3 4 4 3,4 4 5 4,5 5
3 3 3,4 4 5 5 5 5,6 6 6
4 4 4 4,5 5 5 6 6 7 8
5 4 5 5 5,6 5,6 6 8 8 9
6 4 6 6 6 6 7 8 8 10
7 4 6 7 7 7 7 9 9 10
8 4 6 8 8 8 8,9 9 10 11
9 4 6 8 9 9 9 9 10 12
10 4 6 8 10 9 10 10 10 12
11 4 6 8 10 9 11 11 11 13
12 4 6 8 10 9 12 12 12,13 13

Table 1. Typical ranks for 2-, 3- and 4-slice unconstrained
arrays.

4. NUMERICAL RESULTS

The available results on unconstrained, slicewise symmetric,
and double centered arrays can be compared with the numer-
ical values delivered by the computer codes.

Tensors with free entries. Table 1 reports typical ranks
for 2-slice, 3-slice, and 4-slice arrays. The smallest of the
known typical rank values [14, 17], in plain, coincides with
the generic rank computed with rangj3. For the yet un-
known entries, results from rangj3 are inserted in bold.

We report values of the smallest typical/generic rank of
3-way arrays with equal dimensions in table 2. Kruskal [9,

p. 9] refers to a “much studied 9 × 9 × 9 array whose rank
has been bounded between 18 and 23 but is still unknown”.
rgindscal(9,9) yields 19 as a typical rank value, which
is within the range {18, 23} given by Kruskal. From this it
may be conjectured that the array in question had symmetric
slices and either rank 19 or 20.

Now the algorithm can be run on tensors of order higher
than 3. For simplicity, table 3 reports values of the generic
rank obtained for asymmetric tensors with equal dimen-
sions, N , and order L, with an algorithm referred to as
rangj(N,L). We also indicate the dimensionality of the
fiber of solutions. This number is simply defined as the dif-
ference:

F (N,L) = R̄(N,L) (LN − L + 1) − NL

For those values of dimension and order for which F = 0,
only a finite number of different CAND are possible.

N 2 3 4 5 6 7 8 9

R̄ 2 5 7 10 14 19 24 30

Table 2. Smallest typical rank R̄ of unconstrained arrays of
dimension N × N × N .

L N 2 3 4 5 6 7 8

3 2 5 7 10 14 19 24
4 4 9 20 37 62 97
L N 2 3 4 5 6 7 8

3 0 8 6 5 8 18 16
4 4 0 4 4 6 24

Table 3. Top: smallest typical rank R̄ of unconstrained arrays
of equal dimensions, N , and order L. In C these values are
generic. Bottom: Number F of remaining degrees of free-
dom; when F = 0, there are only a finite number of CAND.

Tensors with symmetric matrix slices. We next turn to
the N1 × N2 × N2 arrays with N1 symmetric slices (Table
4). Again, known values coincide with numerical ones deliv-
ered by the code rgindscal3. We inserted results obtained
from rgindscal3 alone in bold face. As far as can be de-
termined, all results are again in agreement with previously
known values [16].

Tensors with double centered symmetric matrix slices.
When the matrix slices are symmetric and also row-wise (or
column-wise, which is the same thing) zero-mean, the code
rgindscal2z yielded the values reported in table 5. Note
that the generic rank computed by rgindscal2z(N2,N1)
is the same as that computed by rgindscal3(N2-1,N1),
at least according to the values explored in table 4. This illus-
trates the point made earlier in this paper.

Tensors with double centered matrix slices without
symmetry constraint. A similar observation holds also true
when the centered matrix slices are not symmetric. We
do not separately report typical rank values for the case of
double-centered (non symmetric) slices. Instead, we verified
that the values obtained numerically with centering coincided
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with the values obtained numerically for uncentered arrays:
rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3).

N1 N2 2 3 4 5

2 2,3 3,4 4,5 5,6
3 3 4 6 7
4 3 4,5 6 8
5 3 5,6 7 9
6 3 6 7 9
7 3 6 7 10
8 3 6 8 10
9 3 6 9,10 11

10 3 6 10 11

Table 4. Typical ranks for N1 × N2 × N2 arrays, with N2 ×
N2 symmetric slices. Bold: smallest typical ranks computed
numerically. Plain: known typical ranks; in C, the smallest
value is generic.

N1 N2 2 3 4 5

2 1 2 3 4
3 1 3 4 6
4 1 3 4 6
5 1 3 5 7
6 1 3 6 7
7 1 3 6 7
8 1 3 6 8
9 1 3 6 9

10 1 3 6 10

Table 5. Smallest typical rank R̄ for N1 × N2 × N2 arrays,
with N2 × N2 symmetric slices having zero-mean columns.
In the complex field, these values are generic.

Symmetric tensors. In table 6, generic ranks obtained
with the code rangjs for 3-way or 4-way symmetric are re-
ported. They are the same as in [4]. The dimensionality of

the fiber of solutions is F (N,L) = R̄ N −
(
N+L−1

L

)
. It is in-

teresting to compare the ranks with those of the unsymmetric
case, obviously larger, reported in table 3. In particular, one
can observe that that the case F = 0 is again rarely met with
generic arrays, but less rarely than in the non-symmetric case.

Conclusion. The values reported in table 1 demonstrate
that the bound given by Kruskal, which ensures uniqueness of
the CAND, is sufficient but not necessary. This motivates the
design of numerical algorithms, other than Kruskal’s ALS,
able to compute the CAND under assumptions less retrictive
than [7, 9, 11, 12], i.e. for any sub-generic rank.
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