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ABSTRACT

Adaptive filtering schemes are subject to different tradeoffs
regarding their steady-state misadjustment, speed of conver-
gence, and tracking performance. To alleviate these compro-
mises, a new approach has recently been proposed, in which
two filters with complementary capabilities adaptively mix
their outputs to get an overall filter of improved performance.
Following this approach, we propose a new normalized rule
for adapting the mixing parameter that controls the combina-
tion. The new update rule preserves the good features of the
existing scheme and is more robust to changes in the filtering
scenario, for instance when the signal-to-noise ratio (SNR)
is time varying. The benefits of the normalized scheme are
illustrated analytically and with a number of experiments in
both stationary and tracking situations.

Index Terms— Adaptive filters, least mean square
methods, tracking filters.

1. INTRODUCTION

Adaptive filtering schemes have become crucial components
in many signal processing applications [1],[2]. Whatever kind
of adaptive filter is used, a compromise involving speed of con-
vergence, tracking capability, and steady-state error is always
present. Traditionally, schemes that manage the step size
have been proposed to alleviate this drawback (see, among
others, [3]-[5]). However, these algorithms normally intro-
duce several parameters, and some a priori knowledge about
the statistics of the filtering scenario is needed for appropri-
ately tuning them.

Recently, a new approach based on the adaptive combi-
nation of filters has been proposed [6],[7]. The basic idea
is that two (or more) adaptive filters with complementary
capabalities adaptively combine their outputs by means of
a mixing parameter, to obtain an overall filter of improved
performance:

y(n) = λ(n)y1 + [1− λ(n)]y2(n), (1)

where yi(n), i = 1, 2 are the outputs of the component filters,
y(n) is the overall output, λ(n) is a mixing parameter in the
range (0, 1), and n is the time index. If λ(n) is appropriately
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updated, it can be shown that the resulting filter performs
as well as or better than the best individual component un-
der certain conditions. For instance, in [7] we analyzed the
performance of the adaptation rule

a(n + 1) = a(n) + μae(n)[e2(n)− e1(n)]λ(n)[1− λ(n)], (2)

where e(n) = d(n) − y(n) and ei(n) = d(n) − yi(n), i = 1, 2,
are the errors of the overall filter and the components, d(n)
being the desired signal, and a(n) is a parameter that defines
λ(n) via a sigmoidal function as1

λ(n) = sgm[a(n)] =
1

1 + e−a(n)
. (3)

Update (2) provides satisfactory performance when the
step-size parameter μa is appropriately chosen. However, its
correct adjustment also depends on some characteristics of
the filtering scenario, such as the input signal and additive
noise powers, or the step sizes of the adaptive filters included
in the combination.

In this paper we present a novel normalized scheme for
the adaptation of a(n). The operation of the new update
scheme will be found to be independent of the signal-to-noise
ratio (SNR), thus simplifying the selection of step size μa,
and providing robustness to scenarios in which the involved
signals present a wide dynamic range.

In the next section we will present the new adaptation
scheme and give an analytical justification for its improved
performance. Then, in Section 3, we provide several experi-
ments comparing the performance of the normalized rule to
the previous combination scheme of [7], both in stationary
and tracking situations.

2. NORMALIZED ADAPTATION OF THE

MIXING PARAMETER

2.1. Algorithm Description

A closer look at (2) reveals that the existing adaptation rule
for the mixing parameter is equivalent to that of a least mean
squares (LMS) filter with varying step size μaλ(n)[1 − λ(n)]
and input signal e2(n) − e1(n). Indeed, this interpretation

1Introduction of parameter a(n) and the activation function is
justified as an easy way to keep λ(n) ∈ (0, 1) and to reduce gradient
noise near λ(n) = 1 or λ(n) = 0. The interested reader is referred
to [7] for further details.
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is reinforced by the fact that the output of the combination
filter can be rewritten as

y(n) = y2(n) + λ(n)[y1(n)− y2(n)] (4)

= y2(n) + λ(n)[e2(n)− e1(n)],

so that we can think of the overall combination scheme as a
two-layer adaptive filter. In the first layer, the two component
filters operate independently of each other and according to
their own rules, while the second layer consists of a filter with
input signal e2(n)− e1(n) that minimizes the overall error.

This interpretation of the combination scheme suggests
that further advantages could be obtained if we used a nor-
malized LMS rule for adapting the mixing parameter rather
than standard LMS. Since e2(n)− e1(n) plays the role of the
input signal at this level, it makes sense to use the following
adaptation scheme:

a(n + 1) = a(n) +
μaλ(n)[1− λ(n)]

[e2(n)− e1(n)]2
e(n)[e2(n)− e1(n)]. (5)

In practice, however, the performance of this scheme is quite
unsatisfactory given that the instantaneous value [e2(n) −
e1(n)]2 is a very poor estimate of the power of the “second
layer” input signal. Similar to the normalized LMS (NLMS)
algorithm with power normalization [1, Sec. 5.6], better be-
havior is obtained from

a(n+1) = a(n)+
μa

p(n)
λ(n)[1−λ(n)]e(n)[e2(n)−e1(n)], (6)

where

p(n) = βp(n− 1) + (1− β)[e2(n)− e1(n)]2 (7)

is a rough (low-pass filtered) estimate of the power of the sig-
nal of interest. Selection of the forgetting factor β is rather
easy. For instance, using β = 0.9 gives a good enough ap-
proximation, and typically ensures that p(n) is adapted faster
than any component filter.

2.2. Analysis of the Normalized Update Rule

In this section, we give some theoretical insight for the pref-
erence of (6) over (2). For this, we will assume a data model
similar to that in [7]: d(n) = wT

0 u(n)+e0(n), where w0 is an
unknown system, u(n) is the input to the component filters
satisfying E{u(n)} = 0 and E{u(n)uT (n)} = R, and e0(n)
is zero-mean i.i.d. noise with variance σ2

0 . Under this model,
we can define the a priori errors of the component filters as
ea,i(n) = ei(n)− e0(n), i = 1, 2.

To make the analysis feasible, we will make the further
assumption that p(n) is a perfect estimate of [e2(n)−e1(n)]2,
i.e.,

p(n) = E{[e2(n)− e1(n)]2} = E{[ea,2(n)− ea,1(n)]2}

= ΔJ1(n) + ΔJ2(n) (8)

where we have defined ΔJi(n) = E{e2
a,i(n)− ea,1(n)ea,2(n)}.

We now proceed similarly to [7]: Taking expectations on
both sides of (6) and after some manipulations, we arrive at

E{a(n + 1)} = E{a(n)}

+
μa

p(n)
E{λ(n)[1− λ(n)]2[e2

a,2(n)− ea,1(n)ea,2(n)]}

−
μa

p(n)
E{λ2(n)[1− λ(n)][e2

a,1(n)− ea,1(n)ea,2(n)]} (9)

Finally, we will require that the adaptation of a(n) is
slow enough so that we can assume that λ(n) is independent
of the a priori errors of the filters. This assumption, which
is more reasonable in steady-state (including both stationary
and tracking situations), leads to:

E{a(n + 1)} = E{a(n)}+ μaE{λ(n)[1− λ(n)]2}
ΔJ2(n)

p(n)

− μaE{λ2(n)[1− λ(n)]}
ΔJ1(n)

p(n)
(10)

In view of (10), we can shed some light on the advan-
tages derived from using (6). Effectively, for most adaptive
schemes, ΔJi(n) increases linearly with σ2

0 , and possibly with
Tr(R) (see, e.g., [1, pp. 327, 387], [7]). However, since these
quantities are divided by p(n), which shows the same depen-
dencies, we conclude that the evolution of E{a(n)} will be
nearly independent of both σ2

0 and Tr(R). Thus, when using
the normalized scheme, we can expect an easier and more ro-
bust selection of μa, in the sense that its optimal value will
not depend on the SNR.

3. EXPERIMENTS

In this section, we study the performance of both the exist-
ing algorithm (2) and the normalized adaptation rule (6) in
a plant identification setup. Two kinds of experiments have
been carried out: in the first we pay attention to conver-
gence and stationary behavior, while the second considers a
tracking situation. To include results with different types of
component filters, NLMS and LMS schemes have been used
for the first and second group of experiments, respectively.

3.1. Convergence and Stationary Performance

For these simulations, the real plant consists of M = 7 coef-
ficients whose initial values are randomly taken from interval
[−1, 1]: w0 = [0.9003 −0.5377 0.2137 −0.028 0.7826

0.5242 −0.0871]T . At n = 15000 the plant coefficients are

changed abruptly to w0 = [0.2542 −0.4696 −0.3753

0.0454 −0.1827 0.7859 0.1475]T in order to study con-
vergence properties when a rapid transition in the plant
occurs. The input signal, u(n), is the output of a first-order
AR model with transfer function 0.6/(1 − 0.8z−1), fed with
i.i.d. Gaussian noise with unit variance. The output additive
noise, e0(n), is also white Gaussian noise whose variance is
changed during the experiment: initally, σ2

0 is set to get an
SNR of 50 dB, and it suddenly increases at n = 30000 to
SNR= 10 dB.

Two NLMS filters with μ1 = 0.5 and μ2 = 0.05 have
been used as the filter components. Step sizes for the mixing
parameter were independently adjusted to μa = 8000 and
μa = 1 for the existing and proposed normalized schemes,
respectively, to obtain a satisfactory convergence. For the
normalized scheme, we also used β = 0.9.

All displayed results have been averaged over 1000 inde-
pendent runs using the excess mean-square-error (MSE) as
the figure of merit: EMSE(n) = E{[e(n)− e0(n)]2}.

As can be seen in Figs. 1(a) and 2(a), both combination
approaches perform adequately for high SNR, showing rapid
convergence of the fast NLMS filter and lower steady-state

3302



0 15000 30000 40000
−65

−45

−25

−5

n

EM
SE

 [d
B

]
μ1 = 0.5

μ2 = 0.05

Existing

(a)

0 15000 30000 40000
0

0.5

1

n

λ(
n)

(b)

Fig. 1. Performance of existing algorithm (2). (a) EMSEs of
the component NLMS filters and of their adaptive combina-
tion. (b) Evolution of the mixing paramenter λ(n).
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Fig. 2. Performance of proposed normalized algorithm (6).
(a) EMSEs of the component NLMS filters and of their adap-
tive combination. (b) Evolution of λ(n).

misadjustment of the μ2-NLMS. However, when the SNR de-
creases (at n = 30000) to 10 dB, (2) results in larger error
as a consequence of the increased misadjustment of the com-
ponents (i.e., larger ΔJ1 and ΔJ2). The normalized scheme
(6), on the other hand, is robust to this situation, and its
steady-state performance remains as low as that of the μ2-
NLMS. The superior performance of the normalized scheme
can also be concluded from Figs. 1(b) and 2(b), examining
the steady-state value of λ(n) when SNR= 10 dB.

Stationary performance has also been studied for other
SNRs, and the limiting value of the EMSE (n →∞) has been
displayed in Fig. 3 as a function of the SNR. The displayed re-
sults have been obtained by averaging the EMSE over 10000
iterations once the algorithm convergence has taken place,
and over 200 independent realizations. It can be seen that,
for all values of the SNR, the combination filter with normal-
ized updates behaves as the slower NLMS component (which
achieves a lower error), while the existing scheme significantly
deviates from the best component for SNR< 30 dB.
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Fig. 3. Stationary steady-state EMSE of two NLMS filters
and of their combination using existing and proposed normal-
ized adaptation for a(n).

3.2. Tracking Performance

In order to evaluate tracking performance, in this section we
will let the plant vary at each iteration following a random-
walk model

w0(n + 1) = w0(n) + q(n)

where q(n) are i.i.d. zero-mean Gaussian random vectors
with covariance matrix Q = E{q(n)qT (n)} = σ2

qI. From
this definition, Tr(Q) can be seen as a measure of the speed
of changes in the plant.

In this case, to obtain results comparable with [7], the
input signal is obtained from the same AR model used in the
previous subsection, but the variance of the exciting signal is
adjusted to get Tr(R) = 1. The variance of the i.i.d. additive
noise e0(n) was again varied to obtain different SNRs.

For these experiments, the combination components are
two LMS filters with μ1 = 0.1 and μ2 = 0.01. The step size
for the existing combination rule has been set to μa = 10000,
to assure good performance when operating with a high SNR
of 50 dB. For the normalized scheme, we have set β = 0.9
and μa = 0.05 (note that this value is different from the one
used in the previous subsection, as a consequence of using a
different kind of adaptive filter components).

In these experiments, the normalized square deviation
(NSD) of a filter, defined as the ratio of its EMSE to that
of the LMS filter with optimal step size, is used as the figure
of merit. Note that in the tracking situation we are consid-
ering, there exists an LMS filter with optimal performance,
whose step size depends on the speed of changes and is given
by [7, Eq. (48)]:

μopt =

s
Tr(Q)

σ0
2Tr(R)

+
[Tr(Q)]2

σ0
4

−
Tr(Q)

2σ0
2 . (11)

Therefore, the steady-state (n → ∞) NSD of any filter
(either a component or the combination) is defined as

NSD(∞) =
EMSE(∞)

EMSEopt(∞)
, (12)

where EMSEopt(∞) is the steady-state EMSE of the LMS
filter with step size given by (11).
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The steady-state NSD of the two LMS components, as
well as the NSD incurred by their combination using the ex-
isting and proposed normalized update equations is shown as
a function of Tr(Q) in Fig. 4 for SNR= 50, 30 and 10 dB.
All results were averaged over 20000 iterations once the algo-
rithms reached steady-state, and over 50 independent runs.

As it can be seen in the figures, the combination scheme
with existing adaptation of the mixing parameter results in
suboptimal performance when the plant changes very fast
[i.e., for large Tr(Q)]. This is due to the fact that both com-
ponent filters are incurring a very significant error, resulting
in non-negligible gradient noise when applying (2). Not only
that, but we can also see how the performance of this scheme
degrades, whatever the value of Tr(Q), as the SNR is de-
creased. On the other hand, when the proposed normalized
adaptation is applied, the combination shows very stable op-
eration, and behaves as well as the best component filter not
only for any SNR, but also for all values of Tr(Q). This can
be explained in similar terms to our discussion at the end
of Subsection 3.2: in tracking situations, ΔJi(∞) can also
be shown to be proportional to Tr(Q), and normalization by
p(n) can compensate this effect.

4. CONCLUSIONS

Adaptive combinations of adaptive filters constitute a flexible
and versatile approach to improve the performance of adap-
tive filters. In this paper, we have presented a normalized
rule for updating the parameter that controls the combina-
tion. When compared to the previous (unnormalized) update
scheme, the new approach results in more stable behavior of
the combination, and simplifies the selection of step size μa.
The superior behavior of the normalized rule has been justi-
fied theoretically, and illustrated by means of several experi-
ments in both stationary and tracking situations, where very
satisfactory results were achieved for very different SNR and
tracking conditions.
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Fig. 4. Steady-state NSD of two LMS filters [NSD1(∞) and
NSD2(∞)] and of their adaptive combination using existing
and proposed normalized update rules for a(n). (a) SNR =
50 dB. (b) SNR = 30 dB. (c) SNR = 10 dB.
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