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ABSTRACT

This paper studies the statistical behavior of an affine combination
of the outputs of two LMS adaptive filters that simultaneously adapt
using the same white Gaussian input. The purpose of the combi-
nation is to obtain an LMS adaptive filter with fast convergence and
small steady-state mean-square error (MSE). The linear combination
studied is a generalization of the convex combination, in which the
combination factor is restricted to the interval (0, 1). The viewpoint
is taken that each of the two filters produces dependent estimates
of the unknown channel. Thus, there exists a sequence of optimal
affine combining coefficients which minimizes the MSE. The op-
timal unrealizable affine combiner is studied and provides the best
possible performance for this class. Then, a new scheme is proposed
for practical applications. It is shown that the practical scheme yields
close-to-optimal performance when properly designed (as suggested
by the theoretical optimal).

Index Terms— Adaptive filters, affine combination, convex com-
bination, LMS algorithm, stochastic algorithms.

1. INTRODUCTION

Adaptive filter design usually requires a fundamental trade-off be-
tween convergence speed and steady-state MSE. A faster (slower)
convergence speed yields a larger (smaller) steady-state mean-square
deviation (MSD) and MSE. This trade-off is usually controlled by
design parameters such as the step-size in the LMS algorithm. Vari-
able step-size modifications of the basic adaptive algorithms offer
a possible solution to this design problem [1, 2]. Recently, a novel
scheme has been proposed that uses a convex combination of two
fixed step-size adaptive filters as shown in Fig. 1 [3]. The adaptive
filter W1(n) uses a larger step-size than the adaptive filter W2(n).
The key to this scheme is the selection of the scalar mixing param-
eter λ(n) for combining the two filter outputs. For instance, the
mixing parameter is defined in [3] as a sigmoid function. The free
parameter is then adaptively optimized using a stochastic gradient
search which minimizes the quadratic error of the overall filter. The
steady-state performance of this adaptive scheme has been studied
in [3]. The convex combination performed as well as the best of
its components in the mean-square sense. The results indicate that a
combination of adaptive filters can lead to fast convergence rates and
good steady-state performance, an attribute usually obtained only in
variable step-size algorithms. Thus, there is great interest in learning
more about the properties of such adaptive structures.

This paper provides new results on the performance of the com-
bined structure which supplement the work presently available in the

literature. The achievable performance is studied for an affine com-
bination of two LMS adaptive filters with white Gaussian inputs and
the structure shown in Fig. 1. The parameter λ(n) is not restricted
to the range (0, 1) as it was in [3]. Thus, the output y(n) is an affine
combination of the individual outputs y1(n) and y2(n). Since each
adaptive filter is estimating the unknown optimal impulse response
using the same input data, W1(n) and W2(n) are statistically de-
pendent estimates of the unknown response. There exists a single
combining parameter sequence which minimizes the MSE.

The adaptive scheme is first studied from the viewpoint of an op-
timal affine combiner. The value of λ(n) that minimizes the MSE for
each time instant n (conditioned on the filter parameters at iteration
n) is determined as a function of the unknown system response. This
leads to an optimal affine sequence. The statistical properties of the
optimal combiner are then studied. It is shown that the optimal λ(n)
can be outside the interval (0, 1) for several iterations. More impor-
tantly, the optimal λ(n) is usually negative in steady-state. Although
the optimal combiner is unrealizable, its performance provides an
upper bound on the performance of any realizable linear combiner.
If a suboptimal (but realizable) algorithm has a performance close to
that of the optimal combiner, sufficient motivation exists for a more
detailed study of the algorithm with respect to analysis and imple-
mentation issues. The performance of the adaptive filter using a sub-
optimal but realizable adjustment algorithm for λ(n) is compared to
that of the optimal combiner. The realizable scheme is based upon
the relative values of time-averaged estimates of the individual adap-
tive filter error powers. It is shown that this realizable combiner rule
can be designed so that the adaptive filter performance is comparable
to the optimal combiner.

2. THE OPTIMAL AFFINE COMBINER

2.1. The Affine Combiner

The system under investigation is shown in Fig. 1. Each filter uses
the LMS adaptation rule but with different step sizes μi, i = 1, 2.
For an input vector U (n) = [u(n), ..., u(n−N + 1)]T ,

Wi(n + 1) = Wi(n) + μiei(n)U (n), (1)

for i = 1, 2, where

ei(n) = d(n)−W T
i (n)U (n), (2)

d(n) = e0(n) + W T
0 U (n), (3)

and e0(n) is white and uncorrelated with u(n). Thus, the Wi(n) are
coupled both deterministically and statistically through U (n) and
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Fig. 1. Adaptive combining of two transversal adaptive filters.

e0(n). The stochastic behavior of (1) is well-known [4–6]. The
outputs of the two filters are combined as

y(n) = λ(n)y1(n) + [1− λ(n)]y2(n), (4)

where yi(n) = W T
i U (n) for i = 1, 2. Here, λ(n) is not con-

strained to (0, 1). An overall system error is defined as

e(n) = d(n)− y(n). (5)

2.2. Optimal Combining Rule

Letting W12(n) = W1(n)−W2(n), Eq. (4) can be written

y(n) = λ(n)W T
1 (n)U (n) + [1− λ(n)]W T

2 (n)U (n)

=
�
λ(n)

�
W1(n)−W2(n)

�
+ W2(n)

�T
U (n)

=
�
λ(n)W12(n) + W2(n)

�T
U (n).

(6)

Subtracting the versions of (1) for i = 2 and i = 1 yields:

W12(n+1) =
�
I−μ1U (n)UT (n)

�
W12(n)+(μ1−μ2)e2(n)U (n).

(7)
Next, consider an instantaneous rule for choosing λ(n) that min-
imizes the conditional MSE E[e2(n)|W2(n), W12(n)] at time n.
Defining W02(n) = W0(n)−W2(n), e(n) in (5) can be written

e(n) = e0(n) + [W0 − λ(n)W12(n)−W2(n)]T U (n),

= e0(n) + [W02(n)− λ(n)W12(n)]T U (n),
(8)

and equating the gradient of the conditional MSE with respect to
λ(n) to zero yields

∂E[e2(n)|W2(n), W12(n)]

∂λ(n)
= 0, (9)

or equivalently

−2E
�
e(n)W T

12(n)U (n)|W2(n), W12(n)
�

= 0. (10)

Using (8), taking the expectation over U (n) and defining the input
conditional autocorrelation matrix

Ru = E
�
U (n)UT (n)|W2(n), W12(n)

�
(11)

results in

[W02(n)− λ(n)W12(n)]T RuW12(n) = 0. (12)

Solving (12) for λ(n) = λ0(n) yields

λ0(n) =
W T

02(n)RuW12(n)

W T
12(n)RuW12(n)

. (13)

In the subsequent analysis, Ru = E
�
U (n)UT (n)

�
= σ2

uI since
the input at time n is assumed statistically independent of the weights
at time n (Independence Theory [6]). Note that Eq. (13) requires
knowledge of W0 and imposes no constraint on λ0(n). This opti-
mal combining rule can be used as a benchmark for evaluation of
realizable schemes for online adaptation of λ(n).

3. PERFORMANCE OF THE OPTIMAL COMBINER

3.1. Steady-state behavior of λ0(n)

Approximating the expected value of (13) by the ratio of the ex-
pected values1, knowing that

lim
n→∞

E[Wi(n)] = W0, (14)

for i = 1, 2, and neglecting the correlations between input signal and
weight vectors in both filters, it can be shown that the steady-state
value of E[λ0(n)] is approximately given by [8]

lim
n→∞

E[λ0(n)] ≈ μ2/μ1

2 (μ2/μ1 − 1)
. (15)

3.2. Mean Square Deviation

Equation (13) yields the minimum MSE at each time instant and also
the MSD of the optimal combiner MSDc(n) where

MSDc(n)

=E
��

W02(n)− λ0(n)W12(n)
�T �

W02(n)− λ0(n)W12(n)
��

= E
�
W T

02(n)W02(n)
�
+ E

�
λ2

0(n)W T
12(n)W12(n)

�
− 2E

�
λ0(n)W T

02(n)W12(n)
�
.

(16)

Inserting (13) in (16) yields

MSDc(n) = E
�
W T

02(n)W02(n)
�− E

	�
W T

02(n)W12(n)
�2

W T
12(n)W12(n)



.

(17)
The first term of (17) is MSD2(n), the MSD of the second adaptive
filter. Since the second term of (17) is a positive quantity, MSDc(n)
is always less than MSD2(n). Similarly, it can be shown that the
optimum linear combiner leads to a MSDc(n) that is smaller than
MSD1(n) [8].

1There are two main justifications for this approximation: 1) Evaluating
expectations of quotients of correlated random variables is usually a very dif-
ficult undertaking. Approximations are often made in order to make progress
in the analysis. We have chosen the approximation that the expectation of the
ratio is approximately the ratio of the expectations (see for instance [7] and
reference [13] within), 2) The latter simulation results support this approxi-
mation.
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Figures 2 and 3 display simulation results obtained with 50 Monte

Carlo (MC) runs for 10 log10(MSDi(n)) and �λ0(n) (MC average of
λ0(n)) for σ2

0 = 10−4, μ1 = 1/(N + 2), μ2 = 0.1μ1 (assuming
W0 is known). Figure 2 shows that MSDc(n) is always less than
either MSD1(n) or MSD2(n) as expected from an optimal affine
combiner. The solid curve is the best performance that could be
obtained using two LMS adaptive filters in the system in Fig. 1 (be-
cause W0 is assumed known). Figure 3 displays a smooth transition

for �λ0(n) from slightly larger than one to a small negative number
as filter two takes over from filter one. The steady-state value of
E[λ0(n)] is equal to −0.056, which matches the theoretical predic-
tion of Eq. (15). The latter implies that the estimate of W0 obtained
using filter one should be subtracted from the estimate of W0 ob-
tained using filter two. The reason for this is that the estimates from
the two filters are correlated [8].

The theoretical behavior of the MSD for the optimal affine com-
biner is determined next. Using Eq. (17), MSDc(n) can be written

MSDc(n) = MSD2(n)− E
�
W T

02(n)W12(n)W T
12(n)W02(n)

�
E [W T

12(n)W12(n)]
.

(18)
It is shown in [8] that

MSDc(n) =

MSD2(n)
μ1σ

2
0(N − 1)

2− μ1(N + 2)

MSD2(n) +
μ1σ

2
0N

2− μ1(N + 2)

. (19)

Equation (19) agrees with physical intuition. The right hand side
of (19) is always less than either MSD1(n) or MSD2(n). Figure 4
shows the theory as compared to the MC simulations shown in Fig.
2. Excellent agreement can be observed. It can be shown [8] that
the reduction in steady-state MSD as compared to that of the convex
combiner [3] is a monotonic increasing function of μ2/μ1 and can
be as large as 2dB as μ2/μ1 approaches unity.

4. AN ITERATIVE ALGORITHM

The previous derivation of the optimal linear combiner was based
upon prior knowledge of the unknown optimal system response W0.
Clearly, this is not the case in reality. However, the theoretical model
and its derived properties can be used to upper bound the perfor-
mance of practical algorithms for adjusting λ(n) without such knowl-
edge. Algorithms that yield close-to-optimal performance for typical
unknown responses can be considered as good candidates for practi-
cal applications. This section studies an algorithm for the adjustment
of λ(n) which is based on the ratio of the average error powers from
each individual adaptive filter. Its performance is then compared to
the optimal performance. The performance of other algorithms ap-
plicable to the system in Fig. 1, such as the algorithm studied in [3],
can also be compared with the optimum performance.

A function of the time averaged error powers could be a good
candidate for an estimator of the optimum λ(n) for each n. The
individual adaptive error powers are good indicators of the contribu-
tion of each adaptive output to the quality of the present estimation of
d(n). These errors are readily available. Consider a uniform sliding

time average of the instantaneous errors

ê2
1(n) =

1

K

n�
m=n−K+1

e2
1(m), (20)

ê2
2(n) =

1

K

n�
m=n−K+1

e2
2(m), (21)

where K is the averaging window. Then, consider the instantaneous
values of λ(n) given by

�λ(n) = 1− κ erf

�
ê2
1(n)

ê2
2(n)

�
, (22)

where

erf(x) =
2√
π

� x

0

e−t2/2 dt. (23)

Equation (22) allows �λ(n) to vary smoothly over (1−κ, 1). A proper
choice of κ can lead to close-to-optimal performance [8]. Figure 5
compares 10 log10(MSDc(n)) obtained from 50 MC simulations us-
ing both (13) and (22) for updating n and the theory for the optimal
combiner using (19). For this example, κ = 1.125 has been used

so that E[�λ(n)] ≈ E[λ0(n)] in steady-state [8]. Excellent agree-
ment can be seen for this suboptimal combining scheme. Figure 6

compares the average values of �λ(n) and λ0(n) over the 50 MC sim-
ulations. There is a reasonably good match between the two curves.

5. CONCLUSIONS

This paper studied the statistical behavior of an affine combination of
the outputs of two LMS adaptive filters that simultaneously adapt us-
ing the same input. The purpose was to obtain a fast convergence and
a small steady-state MSE. The scheme studied generalizes the con-
vex combination so that the combination factor λ(n) is not restricted
to the interval (0, 1). A sequence of unconstrained optimal combin-
ing coefficients (minimizing the MSE) was determined. The optimal
unrealizable combiner was studied and provided the best possible
performance. Then, a new scheme was proposed for practical ap-
plications. The scheme depended upon the time-averaged instanta-
neous squared error of each adaptive filter. This new scheme was
designed using design information from the optimal combiner. Its
performance was very close to the optimum. Monte Carlo simula-
tions were in close agreement with the theoretical predictions.
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Fig. 2. 10 log10(MSD(n)) versus n for W1(n) (long dashes),
W2(n) (short dashes) and combined filter (solid line) (50 MC’s and
σ2

0 = 10−4).

Fig. 3. �λ(n) versus n (50 MC’s and σ2
0 = 10−4). Note that

�λ(4000) = −.0573 < 0.

Fig. 4. 10 log10(MSDc(n)) for σ2
0 = 10−4, Theory (dashed) and

Simulations (100 MC’s, solid).

Fig. 5. 10 log10(MSDc(n)) for σ2
0 = 10−4, Theory (black) and

Simulations (50 MC’s, top curve, red).

Fig. 6. λ(n) (Theory, black) and �λ(n) (50 MC’s, red) for σ2
0 =

10−4.
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