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ABSTRACT

This paper presents a novel implementation for identifying sparse
telephone network echo channels. The new scheme follows the ap-
proach used in [1] in that the location of the channel response peak
is estimated in the wavelet domain. A short time-domain adaptive
lter is then located about the estimated peak to identify the sparse
response. The primary purpose of this paper is to present an ef -
cient design of such system. The use of a new block wavelet trans-
form results in both 70% less computational complexity and im-
proved peak detection. A new robust time-domain adaptive lter-
ing is also proposed which signi cantly reduces the jitter problem in
[1]. Monte Carlo simulations show excellent echo cancellation for a
typical ITU-T channel.

Index Terms— echo cancellation, adaptive ltering

1. INTRODUCTION

Sparse impulse responses are encountered in many applications [3].
Network echo cancellation is one important example. The channel
bulk delay is often much longer than the echo path impulse response
(the nonzero portion of the channel impulse response). Typical bulk
delays can be on the order of 128 ms [1]. Most dispersion times
of network echo path impulse responses (duration of the nonzero re-
sponse) are between 5 and 7 ms [2]. Thus, it is impractical to use full
length adaptive lters to identify the channel impulse response since
long adaptive lters are both slow to adapt and have noisy weights
[4]. Several structures and algorithms have been proposed for ef-
cient network echo cancellers which exploit the channel impulse
response sparseness [1, and references therein].

The solution in [1] uses two short adaptive lters operating se-
quentially. The rst adaptive lter adapts in the wavelet domain us-
ing a partial Haar transform of the input at each time sample. This
lter yields an estimate of the location of the peak of the channel im-
pulse response. A second short time-domain adaptive lter is then
centered about this bulk delay estimate to indentify the short echo
path impulse response. Both lters are adapted using the LMS algo-
rithm [1] but other algorithms may be used. Thus, two short adaptive
lters can be used instead of a very long one, resulting in fast overall
convergence and reduced computational complexity and storage.

The solution in [1] represents an effective way to identify sparse
network echo responses. However, its performance is in uenced
by important design issues: 1) computational complexity for im-
plementing the wavelet transform; 2) centering of the time-domain
adaptive lter about the estimated peak; and 3) as the peak estimate
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changes, tracking of the bulk delay leads to a jitter problem. These
three design issues were not studied in [1]. Note that, although the
basic system studied here is the same as in [1], the implementation
is quite different (and novel) and leads to signi cant performance
improvement.

This paper presents a novel scheme for identifying sparse im-
pulse responses which is based on [1]. However, the sparse response
bulk delay is estimated in the wavelet domain using a Daubechies
spline wavelet transform on both the input and the desired signals
(as compared to the Haar transform only on the input signal in [1]).
Block processing of the transforms yields computational savings of
more than 80% (compared to [1]) for the peak detection. The peak
detection is also improved in the wavelet domain because the new
wavelet transform displays more clearly the impulse response peak.
Finally, a more robust approach is presented for the time-domain
adaptive lter window location and update. This new approach sig-
ni cantly reduces the jitter problem [1]. When compared to [1], the
new scheme leads to signi cant performance improvement and to
computational savings of more than 50% for the complete solution.
A Monte Carlo simulation example shows excellent results for echo
cancellation for a typical impulse response (ITU-T recommendation
G.168 [2]).

2. THE PARTIAL HAAR TRANSFORM

The Haar discrete wavelet transformation of a vector of length 2r

can be represented by its pre-multiplication by a 2r × 2r matrixH

[5]. The partial Haar transformation in [1] uses only a single scale
of the wavelet, say the m-th. The corresponding matrix Hm is a
2r−m × 2r submatrix ofH whose elements are de ned as

Hm(i, j) = ψm [j − (i− 1)2m − 1] , (1)

where

ψm(�) =

8><
>:

2−
m

2 , 0 ≤ � ≤ 2m−1 − 1

−2−
m

2 , 2m−1 ≤ � ≤ 2m − 1

0, otherwise.
(2)

As an example, for r = 3 andm = 2, the partial Haar matrix is
given by

H2 =

»
0.5 0.5 −0.5 −0.5 0 0 0 0
0 0 0 0 0.5 0.5 −0.5 −0.5

–
(3)

The choice of m determines the number of coef cients of the
transform domain adaptive lter. The transform domain adaptive l-
ter uses only 2r−m coef cients for an unknown response with length
2r . This adaptive lter cannot model exactly the 2r-long impulse
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response. Thus, the following scheme estimates the approximate lo-
cation of the channel impulse response peak. Note that every row of
Hm is composed of the same nonzero base vector hm

T and addi-
tional zeros. In (3), hT

2 = [0.5, 0.5,−0.5, −0.5]. This property can
be used to reduce complexity. In general,

hm
T = [ψm(0), . . . , ψm(2m − 1)] , (4)

which is the wavelet in them-th partial.

3. THE PARTIAL BLOCK DWT LMS ALGORITHM

3.1. The New Scheme

The computational complexity of [1] is mainly due to computing
the partial Haar transformed input vector at each time instant. This
is because the transformed vector does not have a shift structure1.
Thus, the entire transformed vector must be evaluated at each iter-
ation. Only the most recent transformed output sample would need
to be evaluated at each iteration if the transformed vector had a shift
structure. This property holds if the time domain signals are pro-
cessed in blocks of length 2m. For example in eq. (3), the input
vector of length 8 is composed of two subvectors of length 4. Each
subvector is multiplied by the same base vector hm

T to generate the
two samples of the transformed vector. If the input vector samples
advance in blocks of length 4, only one new transform sample must
be evaluated at each iteration. Thus, the transform vector will then
have the shift structure.

Fig. 1 shows the block diagram of the proposed implementation.
x(n) is the input signal, wo is the unknow parameter vector, η(n)
is the additive noise, d(n) is the desired signal,w(k) is the wavelet-
domain adaptive weight vector, wt(n) is the time-domain adaptive
weight vector, n is the time sample index and k is the block sample
index. The input vector to the wavelet-domain adaptive lter z(k)
has the shift structure. The top element of z(k) and the vectorw(k)
are updated only at each block of 2m samples of x(n), resulting in a
block adaptive ltering structure. Thus, the estimated peak location
remains invariant during the entire block. This estimate determines
the location of the time-domain adaptive lter wt(n).
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Fig. 1. Scheme of the proposed implementation.

1A shift structure is observed in vectors that arise from a tap-delay line
implementation.

3.2. The Block Wiener Solution

From Figure 1,

z(k) = Hmxb(k) k = 0, 1, 2... (5)

where k refers to the block index,

xb(k) =
ˆ
x[(k + 1)2m − 1], . . . , x[(k + 1)2m − 2r]

˜T (6)

and

z(k) =
ˆ
z(k), z(k − 1), . . . , z(k − 2r−m + 1)

˜T . (7)

with x(n) = 0 for n < 0. The desired signal d(n) is also processed
in blocks. The desired signal block vector d(k) is

d(k) =

»
d[(k + 1)2m − 1], . . . , d[(k + 1)2m − 2m]

–T

. (8)

where
d(n) = η(n) + x

T (n)wo, (9)

and x(n) = [x(n), x(n− 1), . . . , x(n− 2r + 1)]T .
The transform db(k) of d(k) is then obtained as

db(k) = hm
T
d(k). (10)

Using the orthogonality principle, E{z(k)e(k)} = 0 and the
transform domain Wiener lter is given by

woP
= E{z(k)zT (k)}−1

E{z(k)db}. (11)

Assuming that x(n) and η(n) are statistically independent i.i.d.
zero-mean Gaussian sequences and noting that xb(k) = x

ˆ
(k +

1)2m − 1
˜
, it can be shown that

woP
= HmLmwo = Smwo, (12)

where Sm = HmLm and Lm is a 2r × 2r matrix de ned as

Lm(i, j) =

(
ψm(i− j), j ≤ i ≤ j + 2m − 1

0, otherwise.
(13)

The Wiener solution was given in [1] by Hmwo for the same
input signal and noise. Alternatively, Eq. (12) shows that the block
wavelet-domain adaptive lter operates in the Sm domain, not in the
partial-Haar (Hm) domain. The basis vector sm for matrix Sm is
the autocorrelation function of the basis vector hm associated with
Hm.2 It can be veri ed that Sm corresponds to the Daubechies’ bi-
orthogonal 2.2 spline wavelet [6] without energy normalization. The
partial block transform Sm has one important advantage over the
partial Haar transformHm. Sm has better properties for estimating
the location of the peak of the unknown response wo. Fig. 2 shows
the “continuous” version of hm and sm for m = 3. sm is similar
to the typical peaked channel impulse responses in network echo
cancellation whereas hm is not [2]. Thus, Sm yields larger absolute
values of the transform about the peak of wo, and thus improves
detection of the peak.

2Considering the sequence ψm(0), . . . , ψm(2m− 1), the 2m+1− 1 el-
ements from sm will be the nonzero samples of the autocorrelation function

rsm
(l) =

+∞X
κ=−∞

ψm(κ)ψm(κ− l), − 2m ≤ l ≤ 2m.
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Fig. 2. Base vectors ofHm and Sm.

3.3. Location of the Time Domain Adaptive Filter

This section describes a new approach for locating the short time-
domain adaptive lter. The approach uses the transform-domain
adaptive lter estimates. Typical responses wo have fast rising and
exponentially decaying peaks. Thus, pre-multiplication bySm spreads
and right-shifts the channel impulse response wo peak in the trans-
form domain. Fig. 3 illustrates this property for the echo path model
g5(n) given in [2].
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Fig. 3. Model g5 in [2] and the transformed response.

Typical echo paths [2] have peaks located at beginning of their
impulse responses. The peak usually occurs before 4.25 ms (tap 34
for an 8 KHz sampling rate). Dispersion times are typically limited
to 12 ms (96 taps). A good approach has been determined experi-
mentally to align the peak about the (34+2m+2m−1)-th coef cient
of the 128-tap time domain adaptive lter3. The peak location must
be translated to the time domain. Analysis of Sm shows that the co-
ef cient of woP

at position c maps into a region centered about the
position (c − 1)2m + 1 in the time domain response wo. This ap-
proach compares favorably with the approach proposed in [1]. The
latter approach centered the time-domain lter about the estimated
peak and neglected that the peak usually occurs at the beginning of
the response [2].

3.4. The Jitter Problem

Effective sparse impulse response identi cation requires resetting
the short time-domain adaptive lter weights whenever the estimated
peak location changes. The adaptive lter weights were not changed
in [1] after the peak estimate changed. This approach and the lter
location scheme discussed in Section 3.3 led to a jitter problem. The
solution in [1] was to shift the time-domain lter only if the present
and the previous peak location estimates differed by more than q
taps. The block implementation reduces the uctuations in the peak
location estimates. Moreover, the proposed time-domain response
location approach includes all the signi cant echo response coef-
cients in the time-domain adaptive lter window. However, the

3The additional delay 2m + 2m−1 has been experimentally determined
to compensate for the right shift due to the exponential tail ofwo.

initial conditions on the time domain adaptive lter should be re-
synchronized after each new change in the peak location estimate.
Suppose the new peak estimate changes p coef cients to right. Then,
the initial p coef cients of the time-domain lter are discarded and p
new coef cients are grouped at the end of the lter’s response. The
reverse process is performed if the change is to the left. The initial
conditions of the 2r−m − p coef cients must then be changed to the
values they had at the last iteration to avoid re-initialization. The new
p coef cients are initialized at zero since the initial and nal samples
of the echo response are usually close to zero. Time-domain adap-
tation can even occur during the transform-domain peak detection
transient. This also improves the overall convergence rate. Note that
the block delay affects only the peak estimation adaptive lter. The
time-domain adaptive lter is adapted continuously. Consider, for
instance, the typical case ofm = 3 and an 8kHz sampling rate. The
delay in this case would be only 23 = 8 samples. This corresponds
to a 1ms delay. This delay is negligible at 8,000 samples per second.

4. COMPUTATIONAL COMPLEXITY

This section shows that the block implementation is computationally
much more ef cient than the scheme of [1]. The following is as-
sumed: (1) the partial Haar transform in [1] is computed recursively
for m ≥ 3 (more ef cient); (2) the block transform implementa-
tion is performed only every 2m time samples. Thus, the average
computational complexity per time sample is considered; and (3)
the adaptive lters are updated using the LMS algorithm.

Only the rst element z(k) of vector z(k) in (7) must be com-
puted at each transform evaluation in the block implementation. This
is because z(k) has the shift structure. z(k) can be evaluated by ad-
ditions and subtractions of the samples of x(n). A multiplication by
2−

m

2 normalizes the coef cient, according to (2). The same proce-
dure is applied for the transform of d(k).

The number of operations per input sample interval are com-
pared in tables 1 and 2 for wo with N = 1024 coef cients and
m = 2, 3 and 4. Table 1 shows the total number of operations (sums,
subtractions and multiplications) necessary to estimate the peak lo-
cation. Table 2 shows the total number of operations required for
the complete solution (transform and time domains). Both tables
also show the percentage of reduction in the number of operations,
compared to [1].

Table 1. Operations per time sample to estimate the peak location.
m [1] Block Solution Reduction
2 2049 258.25 87.4%
3 1281 66.125 94.8%
4 641 18.0625 97.2%

Table 2. Operations per time sample for the complete solution.
m [1] Block Solution Reduction
2 2562 771.25 69.9%
3 1794 579.125 67.7%
4 1154 531.0625 54.0%

Note also that the computational complexity of [1] may increase
signi cantly if a wavelet other than Haar is used. Most wavelets do
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not allow for recursive computations of the partial discrete wavelet
transforms4 The computational complexity of the proposed scheme
would not increase signi cantly for different wavelets if the block
lengths are de ned properly.

5. MONTE CARLO SIMULATIONS

Monte Carlo simulations were run for the eight echo impulse re-
sponses given in [2] for 50,000 input samples and averaged over
50 runs. The parameters used were σ2

x = 1, σ2
η = 10−6, and

m = 2, 3 and 4. The step-size for the LMS algorithm in the trans-
form domain in [1] was 0.1

(2r−m+2)σ2
x

. The step-size for the block
implementation was chosen to provide the same transformed domain
steady-state mean-square deviation for both implementations. The
step-size for the time domain LMS adaptive lter was 0.1

(130)σ2
x

in
both cases.

Due to space limitations, the only results shown are for the echo
path impulse response g2 [2]. These results are representative of all
cases studied.

Fig. 4 shows the sparse channel impulse response wo2 formed
with g2. Fig. 5 shows the estimated peak location over time. Note
that Fig. 5 does not imply that the overall new scheme is slower than
the scheme in [1] for practical purposes. This is because the num-
ber of extra iterations required for peak detection is not signi cant
compared to the typical convergence times as shown in Fig. 6. Fig. 6
presents the mean-square error (MSE) over time for the two time do-
main adaptive lters. This gure displays the same time domain con-
vergence rates for each implementation even though the convergence
rate is slower for the transform domain lter in the block implemen-
tation. The steady-state MSE of the proposed implementation shows
a signi cant 20dB improvement over [1]. These results are due to the
block implementation time response location and to the handling of
initial conditions. Figs 7 and 8 show the estimated peak location and
the MSE plotted as a function of the number of operations. These
gures show that the transform domain block implementation yields
important computational savings, compared to [1].

6. RESULTS AND CONCLUSIONS

This paper has presented a new block implementation scheme for
identifying sparse impulse responses using the basic structure pro-
posed in [1]. The block-based solution suggests new schemes to
1) estimate the location of the impulse response peak using a block
transform adaptive lter, 2) locate the time domain adaptive lter
about the estimated peak and 3) adapt the time domain lter. The
new transform domain Wiener solution is more effective for esti-
mating the peak location than the solution in [1]. The new time-
domain adaptive process reduces the effects of the estimation jitter.
The solution studied here yields signi cant reductions in computa-
tional complexity and signi cantly better cancellation levels for the
same convergence rate of the solution in [1].
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