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ABSTRACT

We propose a novel method of constructing exact Hilbert

transform (HT) pairs of wavelet bases using fractional B-

splines and state necessary and sufficient conditions for gen-

erating such wavelet pairs. In particular, we demonstrate how

HT pairs of biorthogonal wavelet bases of L2(R) can be con-

structed using well-localized scaling functions with identical

Riesz bounds. Finally, we illustrate this concept by construct-

ing a family of analytic Gabor-like wavelets that exhibit near

optimal time-frequency localization.

Index Terms— B-spline, Hilbert transform, Biorthogonal

wavelet basis, Time-frequency localization, Gabor function.

1. INTRODUCTION

Kingsbury [1] introduced the dual-tree complex wavelet

transform and demonstrated its use in a number of appli-

cations. There is now good evidence that these complex

wavelets have better shift invariance property than the tradi-

tional wavelet bases and tend to perform better in a variety of

tasks like denoising, texture analysis and deconvolution.

Selesnick [2] made the crucial observation that the dual-

tree wavelets form an approximate HT pair. He derived a

phase relation between the scaling filters that ensures exact

HT pair correspondence while he also noted that this corre-

spondence cannot be achieved exactly using rational filter-

banks.

In this paper, we propose a method for constructing ex-
act HT pair of wavelets, in general, and B-spline wavelets

in particular. The theoretical difficulty that exact HT pair of

wavelets cannot be of finite support is overcome using frac-

tional B-splines [3] that are closed under fractional differen-

tiation including the HT. Moreover, B-spline wavelets have

attractive localization properties [4] that can be used advanta-

geously to design Gabor-like wavelets.

The paper is organized as follows. In Section 2 we recall

some fundamental definitions and properties of the HT and

the fractional B-splines. In Section 3, we derive the necessary

and sufficient conditions for constructing wavelet bases that

form a HT pair and extend this result to the design of HT pairs
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of general biorthogonal wavelet bases of L2(R). In Section 4,

we demonstrate the construction of Gabor-like wavelets using

HT pairs of semi-orthogonal B-spline wavelets.

2. HILBERT TRANSFORM AND B-SPLINES

Definition 2.1 The Hilbert transform H : L2(R) → L2(R)
is defined as

H{f} = F−1
{
− j sign(ω)f̂(ω)

}
(1)

where f̂ = F{f} is the L2(R)-Fourier transform of f .

In the definition, −jsign(ω) represents the frequency re-

sponse of the HT operator. The corresponding impulse re-

sponse is given by H{δ}(x) = pv (1/πx) (in the sense of

distributions) [5], which indicates the non-local nature of the

operator; thus the HT of a compactly supported wavelet is

necessarily of infinite support.

A direct implication of (1) is that the HT operator is uni-

tary. Therefore, if {ψi,k}(i,k)∈Z2 and {ψ̃j,l}(j,l)∈Z2 form the

primal and dual wavelets of a biorthogonal wavelet basis of

L2(R), such that 〈ψi,k, ψ̃j,l〉 = δi−j,k−l, then by the unitary

property of the HT, we have

〈H{ψi,k},H{ψ̃j,l}〉 = 〈ψi,k, ψ̃j,l〉 = δi−j,k−l (2)

implying that {H{ψi,k}}(i,k)∈Z2 and {H{ψ̃j,l}}(j,l)∈Z2 form

a biorthogonal wavelet basis of L2(R) as well.

Definition 2.2 The fractional B-spline βα
τ of degree α ∈ R

+
0

and shift τ ∈ R is specified by its Fourier transform

β̂α
τ (ω) =

(
ejω − 1
jω

)α+1
2 −τ (

1− e−jω

jω

)α+1
2 +τ

(3)

The parameters α and τ control the width and the average

group delay, respectively. Importantly, the fractional B-

splines satisfy the three admissibility conditions for a scaling

function to generate a valid multiresolution of L2(R) [3];

they are in general not compactly supported (except for inte-

ger degrees), but they decay like O(1/|x|α+2) which ensures

their inclusion in L1(R) ∩ L2(R) [3].

We finally introduce the family of fractional finite-

difference operators as a generalization of the finite-difference

operator.
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Definition 2.3 The fractional finite-difference operator Δα
τ :

L2(R) → L2(R) is defined as

Δα
τ {f} = F−1

{ Dα
τ (ejω)︷ ︸︸ ︷

(1− e−jω)
α
2 +τ (1− ejω)

α
2−τ f̂(ω)

}
(4)

where α ∈ R
+
0 gives the order of the finite-difference and

τ ∈ R is an adjustable phase factor.

Since the frequency response, Dα
τ (ejω), is 2π-periodic, this

operator also corresponds to a digital filter {dα
τ [k]}k∈Z with

the correspondence Δα
τ {f} =

∑
k∈Z

dα
τ [k]f(· − k).

The finite-difference operator that is especially relevant

in this context corresponds to α = 0 and τ = −1/2. The

corresponding frequency response reduces† to D0
− 1

2
(ejω) =

−jsign(ω)ejω/2, for ω ∈ (−π, π], which is similar to the

all-pass frequency response of the HT operator. The corre-

sponding digital filter d0
− 1

2
also resembles the usual discrete

HT filters:

Proposition 2.4 The digital filter corresponding to the finite-
difference operator Δ0

− 1
2

is specified by

d0
− 1

2
[k] =

1
π(k + 1

2 )
, k ∈ Z (5)

Based on this finite-difference filter, we have a closed form

expression for the HT of the fractional B-spline βα
τ which

happens to be in the linear span of fractional B-splines of the

same degree α but modified shift (τ + 1
2 ).

Proposition 2.5 The Hilbert transform of a fractional B-
spline can be expressed as

H{βα
τ } = Δ0

− 1
2
{βα

τ+ 1
2
} =

∑
k∈Z

d0
− 1

2
[k]βα

τ+ 1
2
(· − k) (6)

Note that digital filter d0
− 1

2
is a “half-shifted” version of the

usual discrete Hilbert filter and acts as an unitary operator

Δ0
− 1

2
: L2(R) → L2(R), when applied to functions or as

an unitary convolution operator d0
− 1

2
: l2(Z) → l2(Z), when

applied to sequences.

Remark: The theoretical difficulty with the HT stems from

the fact that its frequency response has a singularity at ω =
0, which results in a poor decay of the transformed output.

The remarkable feature of (6) is that we have been able to

express the slowly decaying HT as a linear combination of

the better-behaved B-splines. Specifically, d0
− 1

2
only decays

like O(1/|k|) whereas βα
τ+ 1

2
decays as O(1/|x|α+2).

Thus by expressing the HT using shifted B-splines as in

(6), we have in effect moved this singularity onto the digital

†The (principal value) fractional power of a complex number z is defined

as zγ = |z|γejγ arg(z) corresponding to the principal argument arg(z) ∈
(−π, π]. Specifically, (

Q
k zk)γ =

Q
k zγ

k only if
P

k arg(zk) ∈ (−π, π].

filter. In the sequel, we will see that this filter will in turn

be applied to the wavelets. There, its effect is much more

innocuous because ψ̂(ω) = 0 around the origin and hence the

damage to the decay of the wavelets is minimal.

The shift parameter τ only affects the phase of the Fourier

transform of the fractional B-spline and the corresponding

scaling filter [3]. The relation between the scaling filters of

fractional B-splines which have a difference of 1/2 in their

shift parameter is especially enlightening:

Proposition 2.6

Hα
τ+ 1

2
(ejω) = e−jω/2Hα

τ (ejω), for ω ∈ (−π, π] (7)

In effect, the former filter is a “half-sample” shift of the latter.

In other words, if we construct a unique bandlimited function

hα
τ (x) =

∑
k∈Z

hα
τ [k]sinc(x − k), such that hα

τ (x)|x=k =
hα

τ [k], then the above relation implies that hα
τ+ 1

2
[k] = hα

τ (k−
1
2 ), k ∈ Z, i.e. each filter provides the bandlimited interpola-

tion of the other mid-way between its samples.

3. HT PAIR OF WAVELET BASES

A fundamental result in wavelet theory is that it is always pos-

sible to express a valid scaling function as a convolution be-

tween a fractional B-spline and a distribution [6]. The original

theorem involves causal B-splines, but the result can readily

be extended to the more general (α, τ) B-splines.

Theorem 3.1 (B-spline Factorization) ϕ is a valid scaling
function of order α + 1 if and only if its Fourier transform ϕ̂
can be factorized as ϕ̂(ω) = β̂α

τ (ω) · ϕ̂0(ω), for some τ ∈ R,
where ϕ̂0(ω) is a true function of ω bounded on every closed
interval with ϕ̂0(0) = 1.

In the signal domain, this corresponds to a well-defined con-

volution between a fractional B-spline and a tempered distri-

bution, i.e., ϕ = βα
τ ∗ ϕ0 where ϕ0 ∈ S ′(R) [6].

In the present context, we are particularly interested in the

scaling functions

ϕ = βα
τ ∗ ϕ0, ϕ

′ = βα
τ+ 1

2
∗ ϕ0 (8)

generated by the underlying fractional B-splines βα
τ and βα

τ+ 1
2

of the same order but with a relative half-shift. Importantly,

ϕ and ϕ′ are both valid scaling functions of order α+ 1, i.e.,

they generate Riesz bases, satisfy the two-scale relation, as

well as the partition of unity condition.

The HT of a wavelet is also a wavelet in a well-defined

sense; i.e, if ψ is a wavelet whose dilation-shifts {2j/2ψ(2j ·
−k)}(j,k)∈Z2 forms a Riesz basis of L2(R) then the same is

true for {2j/2H{ψ}(2j · −k)}(j,k)∈Z2 . This directly follows

from the unitary nature of the HT operator. Based on The-

orem (3.1), we state the following necessary and sufficient

condition for generating HT pair of wavelets:
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Theorem 3.2 (HT Pair of Wavelets) Let ϕ ∈ L2(R) be a
valid scaling function of order α+1 andψ be a corresponding
wavelet specified by

ψ =
∑
k∈Z

g[k]ϕ(2 · −k) (9)

Let ϕ = βα
τ ∗ ϕ0, with ϕ0 ∈ S ′(R), be a factorization of ϕ

for some τ ∈ R. Consider the valid scaling function ϕ′ :=
βα

τ+ 1
2
∗ ϕ0 of order α + 1 and a corresponding wavelet ψ′

specified by
ψ′ =

∑
k∈Z

g′[k]ϕ′(2 · −k) (10)

Then ψ′ = H{ψ} if and only if g′ = d0
− 1

2
∗ g.

Moreover,
(a) Both ϕ and ϕ′ have the same Riesz bounds, and
(b) The frequency response H(ejω) and H ′(ejω) of the scal-
ing filters corresponding to ϕ and ϕ′ (resp.) are related as

H ′(ejω) = e−jω/2H(ejω), ω ∈ (−π, π] (11)

Remark: It is critical to note that although the HT ψ′ =
H{ψ} of a given wavelet ψ is unique, the scaling function

ϕ′ and the corresponding g′ generating ψ′ is by no means

unique. For instance, the trivial choice of ϕ′ = H{ϕ} and

g′ = g is sufficient to ensure ψ′ = H{ψ}. The necessary

and sufficient condition in Theorem (3.2) holds only for our

preferred choice of the scaling function ϕ′ = βα
τ+ 1

2
∗ ϕ0.

Moreover, this particular choice of scaling function over the

more direct one ϕ′ = H{ϕ} is justified because:

(1)H{ϕ} has poor decay properties and is not in L1(R),
(2) H{ϕ} does not satisfy the partition-of-unity condition as

Ĥ{ϕ}(0) �= 1, and is therefore not admissible in the conven-

tional sense.

A biorthogonal wavelet basis of L2(R) involves two mul-

tiresolution analyses {2j/2ϕ̃(2jx − k) : (j, k) ∈ Z2} and

{2j/2ϕ(2jx − k) : (j, k) ∈ Z2}, where ϕ̃ and ϕ are valid

scaling functions of order (Ñ + 1, N + 1). The correspond-

ing wavelets (ψ̃, ψ) satisfy the biorthogonality condition

〈ψ̃, ψ(· − k)〉 = δk, k ∈ Z [6].

As discussed earlier, we can represent such scaling func-

tions in terms of the underlying B-splines as ϕ̃ = βÑ
τ̃ ∗ϕ̃0 and

ϕ = βN
τ ∗ ϕ0, where ϕ̃0, ϕ0 ∈ S ′(R) with ˆ̃ϕ0(0) = ϕ̂0(0) =

1. Based on Theorem 3.2, we propose the following construc-

tion of HT pairs of biorthogonal wavelet bases of L2(R):

Corollary 3.3 (HT Pairs of Biorthogonal Wavelet Bases)
Let ϕ̃ and ϕ define a biorthogonal wavelet basis of L2(R) of
order (Ñ + 1, N + 1) with associated wavelets

ψ̃ =
∑
k∈Z

g̃[k]ϕ̃(2 · −k), ψ =
∑
k∈Z

g[k]ϕ(2 · −k) (12)

Let ϕ̃ = βÑ
τ̃ ∗ ϕ̃0 be a factorization of ϕ̃ for some τ̃ ∈ R.

Similarly, let ϕ = βN
τ ∗ ϕ0 be a factorization of ϕ for some

τ ∈ R.

Now, consider the multiresolution analyses generated by
the valid scaling functions ϕ̃′ := βÑ

τ̃+ 1
2
∗ϕ̃0 and ϕ′ := βN

τ+ 1
2
∗

ϕ0 with corresponding wavelets

ψ̃′ =
∑
k∈Z

g̃′[k]ϕ̃′(2 · −k), ψ′ =
∑
k∈Z

g′[k]ϕ′(2 · −k) (13)

Then
(a) ψ̃′ = H{ψ̃} and ψ′ = H{ψ}, and
(b) (ψ̃′, ψ′) constitutes a valid biorthogonal wavelet basis of
L2(R) satisfying 〈ψ̃′, ψ′(· − k)〉 = δk, k ∈ Z,
if and only if g̃′ = d0

− 1
2
∗ g̃ and g′ = d0

− 1
2
∗ g.

The proposed construction has the following additional prop-

erties:

• The two biorthogonal systems are of the same order

(Ñ + 1, N + 1) and have the same Riesz bounds.

• If the scaling functions (ϕ̃, ϕ) satisfy the biorthogo-

nality relation 〈ϕ̃, ϕ(· − k)〉 = δk, k ∈ Z, then so do

(ϕ̃′, ϕ′).

• The scaling filters on both the analysis and synthesis

side are “half-sample shifted” versions of one another

H ′(ejω) = e−jω/2H(ejω),
H̃ ′(ejω) = e−jω/2H̃(ejω), ω ∈ (−π, π] (14)

• Finally, if the analysis and synthesis filters of the orig-

inal biorthogonal system satisfy the perfect reconstruc-

tion conditions then so do the filters of the HT pairs.

4. GABOR-LIKE WAVELETS

As a practical application of the results developed so far, we

demonstrate the construction of HT pair of semi-orthogonal

B-spline wavelets that are better localized in space than their

orthonormal counterpart [7].

Starting from the scaling function ϕ = βα
τ , the trans-

fer function of the “shortest” (most localized) wavelet filter

that generates the semi-orthogonal wavelet ψα
τ with the semi-

orthogonality condition 〈βα
τ (·), ψα

τ (· − k)〉 = 0 for all k ∈ Z,

is then given by

G(z) = zA(−z)H(−z−1) (15)

whereH(z) andA(z) =
∑

k∈Z
〈ϕ,ϕ(·−k)〉z−k are the scal-

ing and autocorrelation filter [7] of the scaling function ϕ,

respectively. The associated biorthogonal system comprises

of the (unique) dual-spline scaling function ϕ̃ = β̊α
τ and the

dual wavelet ψ̃α
τ , with corresponding scaling and wavelet fil-

ter h̃ and g̃, respectively [7]. Based on Corollary (3.3), we

construct the following HT pair of B-spline wavelet bases:
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Real Part
Imaginary Part
Modulus

Fig. 1. Gabor-like complex wavelet using HT pairs of B-
spline wavelets. Real Part: ψα

τ , Imaginary Part: ψα
τ+ 1

2
.

Proposition 4.1 (HT Pair of B-spline Wavelets) Consider
the new biorthogonal system with scaling functionϕ′ = βα

τ+ 1
2

and corresponding B-spline wavelet ψα
τ+ 1

2
. Also, let ϕ̃′ =

β̊α
τ+ 1

2
and ψ̃α

τ+ 1
2

be the corresponding dual-spline scaling
function and wavelet, respectively.
Then ψα

τ+ 1
2

= H{ψα
τ } and ψ̃α

τ+ 1
2

= H{ψ̃α
τ }.

Proof. The B-spline scaling functions are trivially factorized

into ϕ = βα
τ ∗ ϕ0 and ϕ′ = βα

τ+ 1
2
∗ ϕ0, where ϕ0 = δ. Simi-

larly, the dual-spline scaling functions are factorized into ϕ̃ =
βα

τ ∗ ϕ̃0 and ϕ̃′ = βα
τ+ 1

2
∗ ϕ̃0, with ϕ̃0 :=

∑
k∈Z

qα[k]δ(·−k)
where

∑
k∈Z

qα[k]e−jωk = 1/Aα(ejω). Here, we have used

the fact that Aα(ejω) is independent of the shift-parameter τ .

Finally, we verify that the wavelet filters, which are re-

lated to the corresponding scaling filters via (15), satisfy the

sufficiency conditions g̃′ = d0
− 1

2
∗ g̃ and g′ = d0

− 1
2
∗g. Hence,

as per Corollary 3.3, the proposition follows. �

As the degree α increases, the semi-orthogonal B-spline

wavelets converge pointwise to the real part of a Gabor func-

tion (modulated Gaussian) [4]. This is of particular impor-

tance as the Gabor functions are known to have optimal time-

frequency localization property in the sense of Heisenberg’s

uncertainty principle. By appropriately adapting the corre-

sponding proof in [4], we can shown that the fractional B-

spline wavelet ψα
τ asymptotically convergences to the real

part of of the Gabor function

ψα
τ (x) ≈

α→+∞
2Mα+1

0 Δω0√
2π(α+ 1)

e−
Δω2

0(x− 1
2 )2

2(α+1) cos
(
ω0x−ω0

2
−πτ

)

where, M0 = 0.670, ω0 = −5.142 and Δω0 = 2.670. Fi-

nally, using the fact ψα
τ+ 1

2
= H{ψα

τ }, we have the following

convergence result.

Proposition 4.2 (Gabor-like Wavelet) The analytic B-spline
wavelet Ψα

τ := ψα
τ + jψα

τ+ 1
2

asymptotically converges to a

Gabor-like function, i.e.,

Ψα
τ (x) ≈

α→+∞
2Mα+1

0 Δω0√
2π(α+ 1)

e−
Δω2

0(x−1/2)2

2(α+1) ej(ω0x−ω0
2 −πτ)

As far as the rate of convergence is concerned, the joint

time-frequency resolution of the complex cubic B-spline

wavelet (α = 3) is already within 3% of the limit specified

by the uncertainity principle. Fig. 1 shows such a Gabor-

like wavelet generated using HT pair of B-spline wavelets of

degree α = 6. Also, shown in the figure is the magnitude

envelope |Ψα
τ | of the complex wavelet which closely matches

the well-localized Gaussian window of the Gabor function.

To the best of our knowledge, these are the best localized

wavelets that have been constructed so far.

5. CONCLUSION

We have demonstrated the construction of exact HT pairs of

biorthogonal wavelet bases, in general, and B-spline wavelets

in particular. We have introduced a new family of analytic B-

spline wavelets and shown that they asymptotically converge

to Gabor functions with optimal time-frequency localization.

As will be demonstrated elsewhere, this construction can be

extended to the design of 2D wavelets with both directional

and optimal localization properties.
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