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ABSTRACT

In previous work, the authors found the lack of shift invari-
ance of real wavelet packets very disadvantageous for speech
enhancement in the case of periodic noise. Therefore, this pa-
per investigates the positive properties of the Dual-Tree Com-
plex Wavelet Transform (DTCWT). This transform is nearly
shift invariant at moderate additional computational cost. How-
ever, the straightforward approach of extending the DTCWT
to wavelet packets by decomposing the high pass coefficients
as well led to non-analytic basis functions. Because analytic
basis functions were required for the desired properties, a fil-
ter swapping scheme was developed to preserve analyticity.
This analytic Complex Wavelet Packet Transform showed im-
proved denoising performance for the application of speech
enhancement and promises improvements for other applica-
tions like general filtering and signal analysis.

Index Terms— wavelet transforms, wavelet packets, com-
plex wavelets, nonstationary noise, speech enhancement

1. INTRODUCTION

Speech enhancement aims at denoising a speech signal cor-
rupted by noise and to improve the intelligibility. Important
applications are communication in noisy environments or pre-
processing for speech recognition systems. A powerful tool
for denoising are wavelet packets (WP) which are a redundant
time-frequency representation. Simple thresholding schemes
are very effective for stationary white and colored noise and
were applied to speech enhancement in many papers, for in-
stance in [1].

However, most papers do only regard stationary noise.
Hence, the probably biggest advantage of time-frequency rep-
resentations is not leveraged: the analysis of nonstationary
signals. In [2], the authors consider periodic noise, whose
power density changes periodically over time, as a special
class of nonstationary noise. This class is important to speech
enhancement because of its common appearance in the pres-
ence of engines and machines.

During their work, the authors found that even small vari-
ations of the noise period lead to a relatively large decrease in
filtering performance. This is due to the shift variance of the
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Fig. 1: Wavelet Packet filter bank of max. depth D = 2, g0:
low pass, g1: high pass, solid line: wavelet transform (subset
of a wavelet packet), dashed: additional decomposition for
wavelet packets

wavelet packet transform caused by the downsampling oper-
ations. The dual-tree complex wavelet transform (DTCWT)
from Kingsbury et al. [3] [4] promises near shift-invariance
and other desirable properties at small additional computa-
tional costs. This paper shows that a straightforward exten-
sion of the DTCWT to wavelet packets is not analytic and
presents a filter swapping scheme in order to solve this issue.

This work is organized as follows: Section 2 gives a re-
view of wavelet packets and wavelet packet denoising. The
basics of the DTCWT are explained in section 3. Afterwards,
section 4 describes the extension of the DTCWT to complex
wavelet packets. The improvement of speech enhancement
by complex wavelet packets is demonstrated in section 5. Fi-
nally, the conclusions are drawn in section 6.

2. WAVELET PACKET THRESHOLDING

The discrete wavelet transform can be computed efficiently
by a Conjugate Quadrature Filter bank (CQF), see figure 1
solid lines only [5]. A discrete-time signal x is split up by
high pass and low pass filters and downsampled. This is done
recursively for the low pass coefficients. The extension to
wavelet packets is straightforward. The high pass coefficients
are split up as well. The coefficients can be organized in a
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Fig. 2: Chirps in time-frequency planes

binary tree and are addressed by

cd,b(n) = WP (d, b, n)

with 0 ≤ d ≤ D , 0 ≤ b ≤ 2d − 1 , 0 ≤ n ≤
N

2d
− 1

where d denotes the depth in the tree, b is the node number in
this depth, n is the coefficient index in the specific node, D
is the maximum depth and N is the signal length. A wavelet
packet is a redundant decomposition. A Best Basis can be
chosen to represent the signal in few but large coefficients.

The established denoising technique in the wavelet packet
domain is called “wavelet packet thresholding”. The WP co-
efficients of the noisy signal are thresholded by a nonlinear
thresholding function. In the case of stationary white noise,
the threshold can be constant for all coefficients because the
energy of white noise is distributed equally across the coeffi-
cients of an orthonormal basis. For stationary colored noise, a
frequency-dependent threshold can be applied. That is, each
node (d, b) has a certain threshold which is constant for all
coefficients of this node.

If the noise is nonstationary, the threshold shouldn’t be
constant over time to get a good filtering result. In [2], the
authors consider periodic noise as a special case of nonsta-
tionary noise which is very common in the presence of ma-
chines and engines. The time-frequency energy distribution
of a noise period is adaptively estimated and used as thresh-
olds of the denoising scheme.

However, the authors found that the shift variance of real
wavelets due to the downsampling operations decreases the
filtering performance if the period is not perfectly constant.
Figure 2 shows time-frequency planes of chirp noise with pe-
riod variations of 5 %. Real wavelet packets yield the coeffi-
cient energy distribution in figure 2a. Two undesired effects
are revealed here. Firstly, the energy is not distributed equally
over all frequencies of the chirp. Secondly, the energy distri-
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Fig. 3: Dual-Tree Complex Wavelet Transform

bution over frequency changes for every period. For instance,
the first period has a maximum at low frequencies while the
last two periods have their maxima at medium or high fre-
quencies. This negative effect due to the real wavelet shift
variance motivates the usage of a more shift robust represen-
tation. The following section will therefore summarize the
theory of the dual-tree complex wavelet transform, which is
nearly shift invariant.

3. THE DUAL-TREE COMPLEX WAVELET
TRANSFORM

Why are complex basis functions more shift invariant than
real basis functions? Shift invariance is a well known prop-
erty of the Fourier transform where a shift of the input signal
only results in a phase change. The amplitude will stay un-
changed. This is due to the analytic basis functions which
lead to complex coefficients. Another advantage of analytic
basis functions is, that their amplitude and therefore the am-
plitude of their coefficients is smoother than the coefficient
amplitudes of real basis functions which oscillate naturally.

Research in applying analytic basis functions to the Dis-
crete Wavelet Transform has led to the Dual-Tree Complex
Wavelet Transform [3]. The real part of the wavelet coeffi-
cients dRe

l (k) and the imaginary part dIm

l (k) are calculated
separately by two filter banks, see figure 3.

The complex coefficients can be calculated by

dCl (k) = dRe

l (k) + j dIm

l (k) .

Since the complex coefficients have to be analytic, the basis
functions of tree Im have to be the Hilbert transforms of the
basis functions of tree Re. This can be translated into design
criteria for the synthesis low pass filters hIm

0 and hRe
1 . The so

called half-sample delay condition is given by
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Fig. 4: Analytic basis functions of the DTCWT

It is valid for all stages with l > 1. For the first stage however,
the condition is

hIm

0,f (n) = hRe

0,f (n − 1) .

Therefore, any existing perfect reconstruction filters can be
used for the first stage if they are shifted by one sample.

For later stages, the half-sample delay condition (1) can-
not be fulfilled perfectly by FIR filters. Kingsbury developed
q-shift filters [6] which approximate condition (1). These
filters are also used for the CWP later. The basis functions
corresponding to these filters are very close to being analytic
(except for the lowest and highest frequency band), as figure
4 shows. The discrete basis functions were calculated by set-
ting all coefficients to zero, except a single coefficient set to
one, and performing the inverse transform with synthesis fil-
ters hRe

0 , hRe
1 , hIm

0 and hIm
1 . The following section will show

how this already powerful approach can be extended to ana-
lytic complex wavelet packets.

4. COMPLEX WAVELET PACKETS

One would expect the extension from the DTCWT to CWP to
be straightforward: Instead of only decomposing the low pass
coefficients, the high pass coefficients should be decomposed
as well in both trees. However, if this is done and the basis
functions are calculated, figure 5 reveals that most of the basis
functions are far from being analytic.

Examining how the basis functions of dC
4 in figure 4 be-

come analytic by the inverse transform helps to understand
this problem. According to the half-sample delay condition
(1), the synthesis low pass filters give a phase difference of
Δϕh0

(ω) = − 1
2ω. For the high pass filters follows a phase

difference of Δϕh1
(ω) = 1

2 (ω − π) because the high pass
filters can be calculated from the time-reversed and shifted
low pass filters. Therefore, the first synthesis filter stage of
dC4 , a high pass filter pair hRe

1 / hIm
1 , gives the coefficients a

phase difference with a slope of 1
2 . The further processing of

the coefficients are upsampling operations, which double the
slope of the phase difference to 1, and synthesis low pass fil-
ter pairs hRe

0 / hIm
0 , which add a phase difference of − 1

2ω thus
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Fig. 5: Non-analytic basis functions of straightforward ap-
proach

compensating the positive slope introduced by the high pass
filter partially. In the end after the top filter stage hRe

0,f / hIm

0,f ,
the phase difference will be flat except a jump from π/2 to
−π/2 at ω = 0. This is exactly the desired phase difference
for Hilbert transformed basis functions. This also explains
why the basis functions of cC4 and dC1 cannot be analytic. If
the coefficients are only processed by low pass filters (or high
pass filters respectively), the phase difference added by the
complete path can never be flat.

These considerations enable the creation of analytic com-
plex wavelet packets. A complete wavelet packet of depth
D = 3 is shown in figure 6. Firstly, the left half of the packet
is regarded. The solid line filter stages are the known DTCWT
as a subset of the complex wavelet packet. The complete fil-
ter bank paths from signal x down to the ends of the DTCWT
add the correct phase difference (except for the highest and
lowest frequency band of course). Thus, the dotted decom-
position stages after the DTCWT stages need no additional
phase difference. Identical filters can be used for both trees,
that is the hRe

0 / hRe
1 or the hIm

0 / hIm
1 filters. In our implemen-

tation, the Re filters are used.
If the right half of the wavelet packet is considered, the

dashed filter stages are mirrored to the original DTCWT filter
stages. The difference is the top level filter stage. In the right
half-tree it is a high pass filter h1,f while in the left half it’s a
low pass filter h0,f . The high pass filter adds a phase differ-
ence of positive slope while the low pass filter phase differ-
ence has a negative slope. Therefore, the lower filter stages in
the right half (dashed) must add the opposite phase difference
than their counterpart in the left half. The filter pairs hRe

0 /
hIm

0 and hRe
1 / hIm

1 can be swapped in the right half in order
to achieve this. The dotted filter stages following the dashed
ones are identical to their counterparts in the left half. This fil-
ter swapping scheme applies to the analysis filters in the same
way.

Considering the same example as in figure 5, figure 7
demonstrates that the basis functions of the proposed Com-
plex Wavelet Packets are analytic. The analysis of chirp sig-
nals with shift variations is shown in figure 2b. In contrast to
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Fig. 6: Complex Wavelet Packet Tree; solid: regular filter
pairs (Re, Im), dashed: swapped filter pairs (Im, Re), dotted:
identical filters (Re, Re)

the real wavelet packet analysis in figure 2a, the energy is dis-
tributed more equally over all frequencies and there is almost
no influence from shifts.

5. RESULTS

This section shows the performance improvement of the de-
noising due to the usage of complex wavelet packets. The
coefficient energy distribution of a period of noise was esti-
mated from only two periods.

5.1. Chirp Noise

A series of chirps with shift variations like in figure 2 was
generated and added to a speech signal. The SNR of the noisy
signal was −3.96 dB. Denoising based on real wavelet pack-
ets yielded an improved SNR of 1.15 dB. Utilizing Complex
Wavelet Packets improved the SNR further to 3.94 dB.

5.2. Engine Noise

Engine noise recorded from a car engine was used. The noisy
SNR was −4.04 dB. It was improved by real wavelet packet
thresholding to 2.38 dB. Complex Wavelet Packet denoising
improved the SNR to 4.26 dB which is again an improvement
compared to real wavelet packets.

6. CONCLUSIONS

In previous work [2], the authors found that the shift vari-
ance of real wavelet packets decreases the performance of a
wavelet packet denoising scheme for periodic noise. There-
fore, this paper concentrated on extending the dual-tree com-
plex wavelet transform (DTCWT) to complex wavelet pack-
ets, thereby incorporating its nearly shift invariance as well as
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Fig. 7: Analytic CWP basis functions

other positive properties [3]. It was found that the straightfor-
ward extension by decomposing the high pass coefficients of
the DTCWT does not yield analytic basis functions, which is
necessary to preserve the desired properties of the DTCWT.
A filter swapping scheme was developed in order to solve this
problem and the basis functions became nearly analytic. The
simulation results showed an improved performance for com-
puter generated chirp noise and real-world engine noise.

It should be noted that complex wavelet packets are not
only useful in the specific periodic noise filtering method but
are in general a better representation because they preserve
the properties of the DTCWT: shift invariance, smooth coef-
ficients and better directionality (in higher dimensions). They
should yield better results in applications like compression,
general filtering or signal analysis.
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