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ABSTRACT

This paper presents a new sigmoid-based WaveShrink function. The
shrinkage obtained via this function is particularly suitable to reduce
noise without impacting significantly the statistical properties of the
signal to be recovered. The proposed WaveShrink function depends
on a parameter that makes it possible to control the attenuation de-
gree imposed to the data, and thus, allows for a flexible shrinkage.

Index Terms— Estimation, Wavelet transforms, Gaussian noise,
Image enhancement, Image restoration.

1. INTRODUCTION

This paper addresses the choice of the shrinkage function in non-
parametric estimation of a signal according to the WaveShrink pro-
cedure described in [1]. The method involves projecting the ob-
served noisy signal on a wavelet basis, estimating the signal coeffi-
cients with a thresholding or shrinkage function, and reconstructing
an estimate of the signal by means of the inverse wavelet transform
of the shrinked wavelet coefficients. In Additive, White and Gaus-
sian Noise (AWGN), such estimation is very efficient for smooth sig-
nals because the wavelet transform of such signals is sparse: these
signals are characterized by few large wavelet coefficients [1].

The contribution of this work is a whole family of smooth and
non zero-forcing WaveShrink functions. These functions depend on
a parameter that allows for a very flexible adjustment of the shrink-
age. The new functions presented in this paper derive from the sig-
moid function and, thus, are called Smooth Sigmoid-Based Shrink-
age (SSBS) functions. SSBS is an adjustable shrinkage thanks to a
parameter that controls the attenuation degree imposed to the wavelet
coefficients.

Due to the smoothness of the SSBS functions, the shrinkage is
performed with less variability so that the statistical properties of
the signal are better preserved than when using standard threshol-
ding functions. Since the SSBS functions introduce little variabili-
ty among coefficients with closed amplitudes, they achieved an al-
most artifact-free denoising, which is relevant in many applications.
Moreover, the performance of the proposed shrinkage is comparable
to that obtained with the BLS-GSM method, introduced in [2] and
considered as the best parametric method.

2. SMOOTH SIGMOID-BASED SHRINKAGE

2.1. SSBS functions
This section introduces a new family of shrinkage functions for wa-
velet coefficient estimation of a signal corrupted by AWGN. Before
that, let us describe very briefly, the limitations of some popular
thresholding and shrinkage functions met in the literature on the
topic. The standard WaveShrink functions considered are the hard

and soft thresholding functions (proposed in [1]); the Non-Negative
Garrote (NNG) function (proposed for wavelet shrinkage in [3]) and
the Smoothly Clipped Absolute Deviation (SCAD) function of [4]).
The graphs of these functions are given in figure 1. On the first hand,
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Fig. 1. Some standard WaveShrink functions.

the hard thresholding function is not everywhere continuous and its
discontinuities generate a high variance in the estimated signal; on
the other hand, the soft thresholding function is continuous, but cre-
ates an attenuation on large coefficients, which results in an over-
smoothing and an important bias for the estimated signal [3]. The
NNG and SCAD functions achieve a certain compromise between
the hard and the soft thresholding functions as can be seen in figure
1. However, all the standard WaveShrink functions presented above
include zero-forcing. This zero-forcing induces singularities of the
thresholding function. As a consequence, this results in a signifi-
cant variance of the estimation due to the sensitivity of the inverse
wavelet transform.

In addition, thresholding rules assume that the wavelet repre-
sentation is sparse. Note that smooth signals yield sparse wavelet
representations in the sense given by [1]: for such signals, large co-
efficients are very few in number. In contrast, wavelet representa-
tions of natural images, which tend to be piecewise regular rather
than smooth, fail to be sparse enough since large coefficients are not
very few. This justifies the introduction of more flexible WaveShrink
methods for correcting the drawbacks of thresholding rules. As an
example, a WaveShrink parametrisation such as that proposed in [5]
results in non zero-forcing and is shown to be more efficient than
soft thresholding estimation.

Therefore, a suitable shrinkage function should satisfy the fol-
lowing two properties. (P1) Smoothness: a smooth shrinkage func-
tion induces small variability among coefficients with close values.
(P2) Penalized shrinkage: a strong (resp. a weak) attenuation for
small (resp. large) coefficients is required because small (resp. large)
coefficients contain less (resp. more) information about the signal.

Now, consider the family of real-valued functions:

δt ,τ,λ(x) = sgn(x)(|x|− t )+
1+e−τ(|x|−λ)

, (1)

for x ∈R and where (t ,τ,λ) ∈R+×R∗+×R+.
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Basically, these functions are suitable shrinkage functions in the
sense given above since they satisfy properties (P1) and (P2). Each
δt ,τ,λ is the product of the soft thresholding function with a sigmoid-
like function. As such, the functions δt ,τ,λ will hereafter be called
Smooth Sigmoid-Based Shrinkage (SSBS) functions.

The hard and soft thresholding functions can be regarded as
functions δt ,τ,λ for degenerated values of parameter τ. In fact, for
fixed t = λ > 0, the function δt ,τ,t (x) tends to the soft thresholding
function sgn(x)(|x|−t )+ when τ tends to +∞. Now, put t = 0 and let
τ tends to +∞. Then, δ0,τ,λ(x) tends to δ0,∞,λ(x), which is a hard
thresholding function defined by:

δ0,∞,λ(x) =
{

x�{|x|>λ} if x ∈R\ {−λ,λ},
±λ/2 if x =±λ.

(2)

For fixed values of t , τ and λ, δt ,τ,λ(x) behaves as the soft
thresholding function sgn(x)(|x|− t )+ when x →∞. It follows that
parameter t imposes an attenuation of t . Such an attenuation may
be undesirable when t is large since, in this case, soft thresholding is
known to over-smooth the estimate. For instance, this will occur if t
is either the universal or the minimax threshold, which both tend to
∞ when the sample size tends to ∞. Therefore, we now restrict our
attention to the particular case where t = 0, the following property
being satisfied for this case. (P3) Vanishing attenuation at infinity:
to avoid over-smoothing of the estimate, the attenuation decreases to
zero when the amplitude of the coefficient tends to infinity. In the
sequel, we put δτ,λ = δ0,τ,λ. Therefore, we have

δτ,λ(x) = x

1+e−τ(|x|−λ)
. (3)

The functions δτ,λ not only satisfy properties (P1) and (P2) but also
guarantee vanishing attenuation (property (P3)). From now on, we
only consider the SSBS functions δτ,λ.

2.2. The role played by the SSBS parameters
This section provides an interpretation of the SSBS parameters. First,
note that λ plays the role of a threshold since δ∞,λ is a hard thre-
sholding function with threshold height λ (see section 2.1 above).

For every given λ, it is easy to see that, in Cartesian-coordinates,
A = (λ,λ/2), O = (0,0) and A′ = (−λ,−λ/2) belong to the curve of
every function (δτ,λ)τ>0. According to Eq. (3), we have δτ,λ(±λ) =
±λ/2 and δτ,λ(0) = 0 for any τ > 0. As an illustration, some SSBS
graphs are plotted in figure 2, for different values of τ.

Fig. 2. The SSBS functions δτ,λ for different values of τ.

It follows that τ parameterizes the curvature of the arc �A′O A,
that is, the arc of the SSBS function in the interval ]−λ,λ[. This
curvature directly relates to the attenuation degree we want to apply
to the wavelet coefficients. Consider the graph of figure 3, where a
SSBS function is plotted in the positive half plan. Due to the anti-
symmetry of the SSBS function, we only focus on the curvature of
arc �O A. Let C be the intersection between the abscissa axis and the

Fig. 3. Graph of δτ,λ in the positive half plan.

tangent at point A to the curve of the SSBS function, the equation of
this tangent being y = 0.25(2+τλ)(x −λ)+0.5λ. The coordinates of
point C are C = (τλ2/(2+τλ),0). We can easily control the arc �O A

curvature via the angle, denoted by θ, between vector
−−→
O A, which is

fixed, and vector
−−→
C A, which is carried by the tangent to the curve

of δτ,λ at point A. The larger θ, the stronger the attenuation of the
coefficients with amplitudes less than or equal to λ. For a fixed λ,
the relation between angle θ and parameter τ is

cosθ =
−−→
O A.

−−→
C A

||−−→O A||.||−−→C A||
= 10+τλ√

5(20+4τλ+τ2λ2)
. (4)

It easily follows from Eq. (4) that θ ∈]0,arccos
�

5/5[; when θ =
arccos

�
5/5, then τ=+∞ and δτ,λ is the hard thresholding function

of Eq. (2). From Eq. (4), we derive that τ can be written as a function
of θ and λ as follows:

τ(θ,λ) = 10

λ

sin2 θ+2sinθcosθ

5cos2 θ−1
. (5)

In practice, when λ is fixed, the foregoing makes it possible to con-
trol the attenuation degree we want to impose to the data in ]0,λ[
by choosing θ, which is rather natural, and calculating τ according
to Eq. (5). Since we can control the shrinkage by choosing θ,
δθ,λ = δτ(θ,λ),λ henceforth denotes the SSBS function where τ(θ,λ)
is given by Eq. (5).

3. EXPERIMENTAL RESULTS

In this section, Hardλ, Softλ, NNGλ and SCADλ denote the Hard,
Soft, NNG, and SCAD thresholding functions with threshold height
λ, respectively. Similarly, SSBSθ,λ will stand for SSBS with para-
meters θ and λ. The Stationary (also call shift-invariant or redun-
dant) Wavelet Transform (SWT) is used for the wavelet decomposi-
tion. The analyzing wavelet is the Haar wavelet, and the shrinkage
concerns the detail coefficients of the first four decomposition levels.

Many experimental tests show that SSBS achieves better Peak
Signal-to-Noise Ratios (PSNRs) than standard thresholding shrin-
kages and PSNRs close to those attained with BLS-GSM. The PSNR,
often used to assess the quality of a compressed image, is given by
PSNR= 10log10

(
d2/MSE

)
, where d gives the dynamics of the sig-

nal (d = 255 in the standard case of 8 bit-coded images).
More specifically, we consider the 512×512 ‘Lena’ image cor-

rupted by AWGN. Table 1 presents the average PSNRs obtained by
SSBS as well as hard, soft, NNG and SCAD thresholdings. Each
PSNR is computed over 10 noise realizations. The threshold used
is either the minimax or the universal threshold. In table 1, the
universal (resp. minimax) threshold will be denoted by λu (resp.
λm). The different values considered for the AWGN standard de-
viation σ are 5, 15, 25, and 35. Parameter τ is obtained from Eq.
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(5) by setting θ = π/6 and θ = π/4 respectively. This table shows
that SSBS outperforms standard shrinkages. In addition, the per-
formance measurements presented in table 1 suggest comparing the
non-parametric SSBS to the parametric BLS-GSM presented in [2].
The latter models neighborhoods of coefficients with Gaussian vec-
tors multiplied by random positive scalars. BLS-GSM also takes
into account the orientation and the interscale dependencies of the
wavelet coefficients. It is computationally expensive but the results
are very good. As mentioned above, BLS-GSM is regarded as the
best parametric denoising method. For example, the results obtained
by BLS-GSM for the same input PSNRs as those used in the preced-
ing tests are given in table 2 for a comparison to SSBS.

Table 1. Average PSNRs computed over 10 AWGN realizations.
PSNR0 denotes the input PSNR.

σ= 5 σ= 15 σ= 25
Method PSNR0 = 34.15 PSNR0 = 24.61 PSNR0 = 20.17

λ=λu ,λ=λm λ=λu ,λ=λm λ=λu ,λ=λm
Hardλ 35.37 36.31 30.41 31.50 28.18 29.31
Softλ 31.57 32.97 27.03 28.20 25.33 26.34
NNGλ 33.76 35.16 28.56 29.92 26.50 27.72
SCADλ 33.03 34.50 27.87 29.21 25.87 27.05
SSBS π

6 ,λ 36.34 37.38 31.09 31.83 28.75 29.12

SSBS π
4 ,λ 35.77 36.90 30.68 31.94 28.40 29.63

Table 2. PSNRs computed when denoising the ‘Lena’ image cor-
rupted by AWGN. The SSBSθ,λ PSNRs given are the best PSNRs
achieved when θ =π/6,π/4 and λ=λu ,λm .

σ= 5 σ= 15 σ= 25
Method PSNR0 = 34.15 PSNR0 = 24.61 PSNR0 = 20.17
SSBS 37.38 31.94 29.63
LD-SSBS 37.72 32.57 30.26
BLS-GSM 38.22 33.52 31.28

According to these results, SSBS is about 1.5 dB less efficient
than BLS-GSM in terms of PSNR. In fact, it is very easy to improve
the PSNRs of SSBS by introducing some level dependency, inter-
scale dependency or block-thresholding procedures. For instance, if
we proceed by adjusting the SSBS method at every decomposition
level j with the threshold value λ/2( j−1)/2, the PSNRs obtained with
this Level Dependent SSBS (LD-SSBS) are those given in table 2.

At this stage, it is now relevant to consider and assess the vi-
sual quality of denoised images obtained via the different shrinkage
methods considered in this paper. Denoised images obtained via
BLS-GSM, SSBS and LD-SSBS are given in figure 4. The 512×512
‘Lena’ image is corrupted by AWGNwith standard deviation σ= 35.
For the SSBS method, the thresholds are again the universal and the
minimax thresholds computed over the whole original image. As far
as LD-SSBS is concerned, these thresholds are adjusted at each de-
composition level as described above. Parameter τ is obtained from
Eq. (5) by setting θ =π/6.

We observe that SSBS denoising achieves a good trade-off be-
tween noise reduction, texture/edge enhancement and computational
load and is almost free of artifacts. In contrast, LD-SSBS and BLS-
GSM better restore textures and edges but introduce artifacts that are
easily visible in figure 4.

In addition, the following experimental results suggest that SSBS
better preserves the statistical properties of the signal of interest than
standard thresholding functions, because SSBS yields coefficients
that are approximately distributed as the signal coefficients.

Consider the Generalized Gaussian Distribution (GGD) with pa-
rameters α and β, defined for every real value x by: pα,β(x) =

β
2αΓ(1/β) e−(|x|/α)β , where Γ is given for z > 0 by Γ(z) =∫∞

0 e−t t z−1dt .

The GGDmodels are sometimes suitable for describing distributions
of wavelet coefficients of real-world signals. For instance, the hori-
zontal detail coefficients located at the first decomposition level of
the SWT of the ‘Lena’ image can be approximately modeled by the
GGD with α= 1.1 and β= 0.56 (see figure 5 (a)).

Now, consider at the same decomposition level, the horizontal
detail SWT coefficients of a noisy ‘Lena’ image; noise being AWGN
with standard deviation σ= 35. The histogram of these coefficients
is plotted in figure 5 (b). The flexibility of the SSBS function makes
it possible to obtain distributions of the shrinked coefficients close
to the distribution of the original wavelet coefficients, as can be seen
in figure 5 (c-d). In contrast, this could not be achieved with stan-
dard shrinkage functions. In fact, the distributions obtained for the
hard, soft, NNG and SCAD shrinkages deviate significantly from
the distribution of the original image wavelet coefficients since these
shrinkages force to zero too many small coefficients. Figure 5 (e-
h) gives the histograms of the coefficients resulting from the hard,
soft, NNG and SCAD shrinkages. The threshold is set to σ so as
to emphasize the effect of the zero-forcing on the distribution of
the shrinked coefficients. The minimax and the universal thresholds
being larger than σ, the results are even worse with these standard
thresholds: a very high peak at zero and very few large coefficients
scattered on both sides of this peak.

4. CONCLUSION

In this work, we have introduced a whole family of shrinkage func-
tions, the SSBS functions. The SSBS functions are smooth and per-
form penalized and very regular wavelet shrinkage. This shrinkage
is non-parametric because no prior information about the signal is
taken into account. The SSBS method is simple and flexible in the
sense that SSBS functions allow for a fine tuning of the shrinkage.

The experimental results of section 3 show that SSBS achieves
almost artifact-free denoising and good PSNRs, even in comparison
to BLS-GSM. We can reasonably expect to improve SSBS perfor-
mance by taking the intrascale and interscale dependencies into ac-
count.

Extension of this work involves addressing the influence and the
optimization of the three parameters t , τ and λ. In particular, Stein’s
unbiased risk estimate or its variant stated in [5, Theorem 1] could
be used as a criterion to optimize the choice of these parameters.
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