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ABSTRACT

This paper investigates the reconstruction of an image from the
phase or magnitude of its complex wavelet transform (CWT). We
view the CWT as an approximation to the analytic representation
of some real wavelet coefficients and develop the conditions un-
der which a 1D signal is uniquely specified by its analytic phase
or magnitude. Then, we extend the uniqueness conditions to multi-
resolution and higher dimensions in order to match the situation of
the CWT. In the development of the uniqueness conditions, we also
gain some insights about the quality of reconstructed images and the
geometrical structure of the CWT phase and magnitude representa-
tion. Our results for the CWT may also be applied to other localized
phase and magnitude representations.

Index Terms— Wavelet transforms, Discrete Fourier trans-
forms, Image representations

1. INTRODUCTION

The recent Complex Wavelet Transform (CWT) (see [1] and the ref-
erences therein) provides multi-resolution and localized phase and
magnitude to represent signals. In [2], we proposed a new image
inpainting algorithm which estimates the localized CWT phase and
magnitude with simple geometrical models and then reconstructs an
inpainted image from the estimated phase and magnitude. If both the
phase and magnitude can be estimated with our geometrical models
accurately, a good estimate of the image can be reconstructed imme-
diately by the inverse CWT. However, for many images, only one of
the phase and magnitude can be described by our simple models with
reasonable accuracy due to the complex nature of images. Therefore,
we have to face the problem of image reconstruction from only its
CWT phase or magnitude. Similar reconstruction problem may be
encountered in many other image processing applications involving
the modeling and estimation of localized phase and/or magnitude, or
in image representation with partial information. For example, an
algorithm for image reconstruction from Gabor-like localized phase
has been proposed and analyzed in [3, 4].

We observed that for most images, if either the CWT phase
or magnitude can be estimated correctly, the image can be recon-
structed perfectly or with very high visual and objective quality by
POCS-like iterative algorithms [2]. Typically, the reconstruction
from phase has better fidelity than the reconstruction from magni-
tude. In this paper, we address a fundamental problem: under what
conditions an image can be reconstructed from its CWT phase or
magnitude. We propose to view the CWT phase and magnitude as
an approximation to the analytic representation of some real wavelet
coefficients and develop the conditions under which a 1D signal is
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uniquely specified by its analytic phase or magnitude. Then, we dis-
cuss the extension of the uniqueness conditions to multi-resolution
and higher dimensions. We also discuss some insights about the
difference between phase and magnitude, the quality of the recon-
structed image, and geometrical structure of the phase and magni-
tude representation. Our results on the CWT may also be applicable
to other localized phase and magnitude representations.

This work is related to the signal reconstruction from its Fourier
phase or magnitude. It is well known that under certain conditions,
a signal is uniquely specified by its Fourier phase or magnitude and
may be reconstructed with iterative algorithms [5, 6, 7, 8]. The re-
construction from the CWT phase or magnitude shows significantly
different characteristics from the reconstruction from Fourier phase
or magnitude. First, symmetric signals (e.g., edges) are not unique
given their Fourier phase or magnitude, but they can be reconstructed
from only their CWT phase or magnitude. Second, the reconstruc-
tion from Fourier magnitude requires significant amount of infor-
mation of the phase (in [8], the sign of every phase variable is re-
quired), while the reconstruction from the CWT magnitude without
any phase information is very common.

This paper is organized as follows. Section 2 discusses the an-
alytic representation of real signals and briefly review the CWT.
Section 3 develops the uniqueness conditions of the 1D analytic
phase or magnitude representation and discuss its extension to multi-
resolution and higher dimensions. Section 4 shows some simulation
examples and section 5 concludes the paper.

2. THE COMPLEX WAVELET TRANSFORM

2.1. The analytic representation

A real-valued signal s(t) can be viewed as the real part of a complex-
valued analytic signal ¢(t) = s(t) + 7 $(t), where 5(¢) denotes the
Hilbert transform of s(¢). In the frequency domain,

25(w), w>0
Clw) =5w) Fa(w) =4 5(0), w=0
0, w<0

where F,(w) is the frequency response of an analytic filter f,(t)
which suppresses all the negative frequencies. The phase and magni-
tude of the analytic signal reveal fundamental signal characteristics
[9]: the magnitude defines the amplitude of local sinusoid and the
phase relates to small local shifts.

2.2. The complex wavelet transform

The complex wavelet transform (CWT) is a multi-resolution and lo-
calized signal representation. In its magnitude and phase form, the

ICASSP 2008



CWT decomposes a discrete signal s(n) into a set of magnitudes
p(n; k) and phases 6(n; k), where k is in an index set @ of scales.
The CWT magnitude represents a smoothed measurement of the lo-
cal signal energy for the designated frequency band, and the CWT
phase indicates the location of that energy relative to the position of
each coefficient.

{p(n; k)e 0 — c(nik) 1 k € <I>} = CWT(s(n))

We argued in [2] that an image may be reconstructed from either
its CWT phase or magnitude with POCS-like iterative algorithms
(exemplified in Fig. 1 '), because the CWT is close to a localized
Fourier transform. However, we observed that the reconstruction
from the CWT has two important properties which the Fourier trans-
form lacks: (1) important symmetric signals (e.g., edges) are unique
given the phase or magnitude; (2) the reconstruction from the mag-
nitude requires no extra phase information.

(@) (b) (© (d)
Fig. 1. The reconstruction results from (a) the Fourier phase (perfect),
(b) the Fourier magnitude (PSNR = 20.2dB), (c) the CWT phase (per-
fect), and (d) the CWT magnitude (PSNR = 44.1dB)

To investigate the reconstruction from the CWT phase or mag-
nitude, we adopt the view point of the analytic representation. The
frequency responses of the CWT filterbank on the first three scales
are shown in Fig. 2. The filter for each scale approximates the
concatenation of a real wavelet bandpass filter and an analytic fil-
ter. We propose to view the CWT phase and magnitude in each
scale as the analytic phase and magnitude of the corresponding real
bandpass wavelet coefficients. In the next section, we connect the
analytic phase and magnitude to the Fourier phase and magnitude,
develop the conditions under which a signal is uniquely specified by
its analytic phase and magnitude, and discuss its extension to multi-
resolution and higher dimensions to match the situation of the CWT.
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Fig. 2. The frequency response of the CWT

3. THE UNIQUENESS IN TERMS OF ANALYTIC PHASE
OR MAGNITUDE

3.1. 1D analytic phase and magnitude

In this subsection, we consider 1D discrete signal z € IR™. Suppose
a discrete analytic filter F' € € *" is used to construct the analytic

L All the figures and results in this paper are generated with an implemen-
tation of the CWT following [2].
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phase 6(z) = Z(Fz) and magnitude p(x) = |Fz|. If circular
boundary extension is used, F’ is circulant and diagonalizable by the
DFT matrix W:

Fo =W '"ApWaz =W ' (ArWaz)

where the diagonal matrix Ar contains the frequency response of
the analytic filter. Therefore, the analytic phase and magnitude are
the Fourier phase and magnitude of sequence ArWx (ignore the
difference between W and W ~'). The advantage of analytic repre-
sentation over Fourier transform is two-fold. First, the analytic filter
can be easily designed to have compact support to achieve time or
spatial localization. Second, symmetric = becomes non-symmetric
after the mapping to ApWx allowing unique representation with
phase or magnitude.

After recognizing the connection to the Fourier transform, we
know the theory for Fourier phase and magnitude [5, 6, 7, 8] ap-
plies to sequence AWz instead of z. However, we found that the
global uniqueness conditions for Fourier magnitude differ signifi-
cantly from our observation: reconstruction from the CWT magni-
tude is much more common than the reconstruction from Fourier
magnitude. Therefore, we use a new method to develop the local
uniqueness conditions for analytic phase and magnitude.

In order to be general for both the redundant transforms and crit-
ically down-sampled transforms, we assume that x is a bandpass sig-
nal living in a known DFT frequency band of [K1, K2] (0 < K; <
Ky < %). Again for generality, we only assume that the analytic
filter F = A+ j B (A, B € RY*") s circulant and suppresses all
the negative frequency components.

The local uniqueness of analytic phase 6(x) = Z(Fz) and mag-
nitude p(x) = |Fx| can be determined by the Jacobians of 6(z) and
p(x) with respect to x. Suppose p(z) has no zero element (i.e.,
p(x) > 0), then, the Jacobians exist:

Jo(wy = D, (DasB — Dpy A)
Jp(x) = Dyay (DazA + DpoB)

where D,, denotes the square matrix with vector w on its diagonal.
The Jacobians specify the tangent plane of 6(z) and p(z) at x. Given
the band [K1, K>] and 0(x) or p(x), if for all v # 0 € IR™ in band
[K1, K2], Jp(2)yv # 0 or Jyzyv # 0, then x is locally unique within
a small neighborhood of z. For phase, local uniqueness implies
global uniqueness, because if 0(x) = 0(y), then O(az +by) = O(x)
forall a,b > 0.

Let Sz (z) be the z transform of W Fz. Then, S;(z) is non-zero
only in the range between z K1 and 2z~ %2,

Ko
Sz(z) = Z apz "

k=K

Since the analytic filter F' removes all the negative frequencies, the
number of non-zero terms in S (z) is at most 3.

Theorem 1 (The uniqueness given phase or magnitude). With
Sz (z) defined above, if and only if at least one of ax, and ax, is
non-zero and Sy (z) has no zeros on the unit circle or in complex
conjugate reciprocal pairs, within frequency band [K1, K2], (1)
given the analytic phase 6(x), x is globally unique up to a scale
factor ; (2) given the analytic magnitude p(z), x is locally unique
when ao # 0 or locally unique up to a phase shift when ao = 0.



Proof: The outline of the proof is as follows. First, by the def-
inition of the Jacobians, Ap = J,()Az, A0 = Jy)Ax, and
Ap+3 DpyA0 = Doy FAz forall Az € RY. Letv = Az,
we have

(Fz)" © (Fv) = Dp@yD, —jo(x) (Fv)
= (Dp@)p(a) +3 DiwyJowy)v (1)

where ® and * denote element-wise multiplication and complex con-
jugation respectively 2. Therefore, Joeyv = 0 or Jyyv = 0 is
equivalent to (F'z)* ® (Fv) being pure real or pure imaginary re-
spectively.

Second, let the z transform of W F'v be S, (z) (in the same way
as Sz (z)), then the z transform of W ((Fz)* ® (F'v)) is the polyno-
mial S(z) = S;(1/2")S,(z). Therefore, (Fz)* ® (Fv) being pure
real or pure imaginary is equivalent to S(z) being complex conju-
gate symmetric or anti-symmetric about z° respectively. According
to the following lemma, the zeros of S (1/2")S,(z) are on the unit
circle or in complex conjugate reciprocal pairs.

Lemma. A FIR sequence S(z) has generalized complex conjugate
symmetry (ie., S*(1/2") = ¥ *2S(z) for some o € IR and
M € Z), if and only if the zeros of S(z) are on the unit circle or in
complex conjugate reciprocal pairs.

Finally, if and only if S;(z) have no zeros on the unit circle or
in complex conjugate reciprocal pairs, the symmetry of S(z) about
2° requires that S, (2) = e’ ?S,.(2) (r,¢ € IR). Combined with
the fact z,v € IR™, we conclude that, for v # 0 in band [K7, K],
(1) Jozyv = 0if and only if v = rx; (2) J,(zy)v = 0 if and only
if ap = 0 and v = rZ (where 7 is the Hilbert transform of x). It is
easy to show that if ap = O and y = zcosa + Tsina (Sy(z) =
¢! * S, (2)) forany o € R, p(x) = p(y).

Therefore, under the conditions stated in the theorem, x is glob-
ally unique up to a scale factor given 6(z) and z is locally unique up
to at most a phase shift given p(x).

O

The above uniqueness conditions are about the same for phase
and magnitude. Under the uniqueness conditions and given the
phase, the signal is living in a 1D linear subspace, therefore, POCS
algorithm is guaranteed to converge to the right signal. Given the
magnitude, in most cases we have ap # 0 (suppose appropriate
down-sampling is performed), therefore, when the initial estimate is
close to the right signal, POCS algorithm will still converge to the
right signal without any phase information.

3.2. Discussions about the uniqueness theorem

A. Localized signal with Zero elements in the magnitude

In the above proof, we assume that the magnitude p(z) contains
no zero elements. For real life signals, the magnitude may be zero
within smooth areas and be non-zero around edges. The uniqueness
theorem may be extended in the following way to incorporate this
situation. Suppose we know the locations of zero magnitude and
we are only interested in signals with same set of zero magnitude
(similar to the known frequency band in the above theorem). The k-
th element of the magnitude is zero (px () = 0) if and only if Sz (2)

: 2k .
hasazeroate™ "~ . Then, S, (z) in the above proof has to have the

2The D;l (z) terms on in Jp(z) and Jy () are all canceled out, therefore,
the zero elements in p(x) does not change the conclusion.
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same zero to maintain px(v) = 0. Therefore, the conclusion above
still holds.

B.  Geometry specified by phase and magnitude

The uniqueness theorem reveals that the geometry of the man-
ifold specified by the analytic phase or magnitude is very similar
to 2D concentric circles. For any € IRY satisfying the unique-
ness conditions, any y € {rz : 7 > 0} have the same phase as x;
any y € {zcosa+ Tsina: o € R} has the same magnitude as
z, if x is zero mean. Starting from z, by continuously changing the
phases o, we can keep the magnitude unchanged and travel all the
way through Z, —x and —Z, and then back to x again (just like trav-
eling on a circle); or, we may continuously change r to reach bigger
or smaller circles.

C. Singular values of the Jacobians

The largest singular values of D,)Jy() and J,(,) are both
v/2 and the associated right singular vectors are Z and x respectively
(|A0()|| < V2| Ax| and [Ap(a)]| < v2]|Az]]). Thatis, the
largest changes in 0(x) and p(x) come from the changes of z in the
direction of Z and x respectively. Therefore, the phase is most effec-
tive in encoding the local shift (o in {z cosa + Tsina : o € IR})
and magnitude is most effective in encoding the local signal energy
(riny € {rz :r > 0}).

The smallest singular value of D, ,)Jy(s) is 0 and the corre-
sponding singular vector is . In reconstruction from phase, we have
to assume that ||| is known. The smallest singular value of J, () is
0 or very close to 0 and the corresponding singular vector is Z. That
is, © + rZ has exactly or almost the same magnitude as z for small
r > 0. Therefore, the reconstruction from magnitude without any in-
formation of phase is typically less accurate than the reconstruction
from phase with known signal energy for very detailed structures.

3.3. Extension to multi-resolution

The extension of the uniqueness conditions to the multi-resolution
case is straightforward. Suppose we first apply a real wavelet fil-
ter bank to decompose the signal s(n) into real wavelet coefficients
{z(n;k) : k € ®} and then apply the analytic filter F’ to transform
z(n; k) to analytic magnitude and phase {p(n; k), 0(n; k)}. If the
wavelet coefficients x(n; k) in each band satisfies the uniqueness
condition, x(n; k) can be uniquely specified by p(n; k) or 8(n; k).
Since the signal x can be determined by the wavelet coefficients in
all the bands {z(n;k) : k € ®}, x must be uniquely specified by
{p(n;k) : k € ®} or {O(n; k) : k € }.

The multi-resolution decomposition greatly helps the recon-
struction from magnitude. Lowpass bands are typically recovered
first and give a good initial estimate of the highpass bands through
the inter-band dependency and redundancy of the CWT.

3.4. Extension to higher dimensions

The extension of the uniqueness condition to higher dimensions
follows from the extension of analytic filter to higher dimensions
[10]. For example, consider a 2D signal € RY with \/N X \/N
pixels. The 2D magnitude p(m,n) and phase 6(m,n) in each
band is constructed by filtering z:(m,n) with a 2D analytic fil-
ter F' with single quadrant frequency response. We can construct
polynomials S (21, 22) and S, (22, 22) in a similar way as for 1D
and let S(z1,22) = Si(1/27,1/25)S,(21,22). Since equation
(1) in the uniqueness theorem holds for higher dimensions, we
conclude that S (21, zz) should have no non-trivial symmetric fac-
tors (f(z1,22) = € “2M1 20" f*(1/25,1/23)) for the phase and
magnitude to be unique.



4. SIMULATION EXAMPLES

In this section, we show some simple reconstruction results to illus-
trate the uniqueness conditions developed in the previous section. In
Fig. 3, an anti-symmetric 1D edge with non-zero mean (KX; = 0 and
arx, = ao # 0) is reconstructed from its analytic phase or magni-
tude with POCS-like iterative algorithms. The reconstruction from
phase is very accurate (relative error is 6.2 x 107*%). Although the
signal is only locally unique given its magnitude, we found that for
edges, the reconstruction from magnitude usually converges to the
right signal when starting with random phase. We observed that the
reconstruction from magnitude has larger relative error than the re-
construction from the phase, which is due to the very small singular
value associated with Z discussed in the previous section.
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Fig. 3. The reconstruction from the analytic phase or magnitude: (a)
z, the original signal with non-zero mean; (b) Zy, the reconstruction
from analytic phase (|29 — z||2/||z]|2 = 6.2 x 10715); (c) Z,, the re-
construction from analytic magnitude (||2, — z||2/||z||2 = 4.9 x 1076).

An example of 2D image reconstruction with given CWT phase
or magnitude has already been given in Fig. 1. In many real life ap-
plications, we may have neither the phase nor the magnitude avail-
able and we have to rely on some modeling techniques to estimate
either of them. In Fig. 4, we show some image reconstruction re-
sults with modeled CWT phase or magnitude. Although the phase
and magnitude models used are very simple (see [2] for more details
and examples), the reconstructed images have very good objective
and visual quality.

5. CONCLUSIONS

This paper investigates the reconstruction of an image from its CWT
phase or magnitude. We relate the localized CWT phase and magni-
tude to the analytic representation and develop the conditions under
which a signal is unique with specified CWT phase or magnitude.
Our results on the CWT may also be applied to other localized phase
and magnitude representations.
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