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ABSTRACT

Collaborative beamforming has been recently introduced
in the context of wireless sensor networks (WSNs) to increase
the transmission range of individual sensor nodes. In this pa-
per, it is proposed to model the spatial distribution of sensor
nodes in a cluster using Gaussian probability density function
(pdf). Gaussian pdf is more appropriate for many WSN appli-
cations than the previously considered uniform pdf which is
more suitable when sensor nodes are deployed one at a time.
The average beampattern and its characteristics, the distribu-
tion function of the beampattern level in the sidelobe region,
and the upper bound on the outage probability of sidelobes
are derived using the theory of random arrays.

Index Terms— Random arrays, cooperative systems,
Gaussian distributions, array signal processing, phased arrays.

1. INTRODUCTION

In WSN applications, it is required to transmit the acquired
data over long distances using the transmission resources avail-
able at sensor nodes only. However, this can be power costly
for individual sensor nodes. The transmission range of sen-
sor nodes can be extended based on the collaborative beam-
forming principle [1], [2]. This principle uses the fact that
WSN can be deployed in the form of disjointed clusters of
sensor nodes, which act collaboratively as distributed antenna
arrays. Each sensor node shares the data to be transmitted
with all other nodes in the cluster, and the same data symbols
are transmitted by all nodes synchronously. The individual
signals from sensor nodes arrive in phase and constructively
add at the intended destination which can be a neighboring
cluster or a base station.

Some characteristics of the collaborative beamformer av-
erage beampattern have been derived in [1] using the theory
of random arrays [3], [4]. However, it has been assumed in
[1] that the sensor nodes in each cluster are located accord-
ing to uniform pdf. Selecting a suitable spatial pdf is a criti-
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Fig. 1. Geometric Model.

cally important problem because the characteristics of a sam-
ple beampattern are determined by the actual spatial distribu-
tion of sensor nodes. The assumption of uniform pdf is not
well justified in many WSN applications because the actual
pdf depends on the sensor nodes deployment method and can
not be arbitrarily selected. For example, in some applications
it is required to cover large geographical area. In this case,
the deployment has to be done by dropping clusters of sensor
nodes from an airplane. Then the spatial distribution of sensor
nodes within a cluster is likely to be Gaussian [5].

In this paper, Gaussian pdf is used to model the spatial
distribution of the sensor nodes in a cluster of WSN. The av-
erage beampattern characteristics are derived and compared
with the corresponding characteristics for the case when uni-
form pdf is used. The distribution of the beampattern level in
the sidelobe region as well as the upper bound on the outage
probability of sidelobes are derived.

2. SYSTEM MODEL

Fig. 1 shows the geometric model of a cluster of N sensor
nodes. For the spherical coordinates (r, φ, θ), the angle θ de-
notes the elevation direction, φ represents the azimuth direc-
tion, and r is the distance from the origin to a given point.
Sensor nodes are co-located in the xy-plane. Therefore, for
the kth sensor node we can write that θk = π

2 , k = 1, . . . , N .
The rectangular coordinates of the sensor nodes (xk, yk), k =
1, . . . , N , are chosen randomly according to a zero mean Gaus-
sian distribution with variance σ2. The corresponding spher-

ical coordinates
(
rk =

√
x2

k + y2
k, φk = tan−1( yk

xk
)
)

have

Rayleigh and uniform distributions, respectively, i.e., frk
(r) =

r
σ2 e−

r2

2σ2 ; 0 ≤ r <∞ and fφk
(φ) = 1

2π
; −π ≤ φ < π.
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Let us denote the Euclidean distance between the kth sen-
sor node and a point (A,φ, θ) on a sphere of radius r = A
as dk(φ, θ) =

√
A2 + r2

k − 2rkA sin(θ) cos(φ− φk). As-
suming that the destination cluster or base station is located
at (A,φ0, θ0), and defining the vectors r = [r1, r2, . . . , rN ]
∈ [0,∞]N and φ = [φ1, φ2, . . . , φN ] ∈ [−π, π]N , the sam-
ple array factor for a cluster of randomly located sensor nodes
can be defined as

F (φ, θ/r,φ) �
1

N

N∑
k=1

ejψkej 2π
λ

dk(φ,θ) (1)

where λ is the wavelength and ψk is initial phase of the kth
sensor carrier frequency. The factor 1/N is used to insure that
max [F (φ, θ/r,φ)]=1. Assuming that the sensor nodes are
aware of each other locations and synchronizing their
carriers with initial phase ψk = − 2π

λ
d(φ0, θ0), we can

write the sample array factor as F (φ, θ/r,φ) = 1
N

∑N

k=1

ej 2π
λ

[dk(φ,θ)−dk(φ0,θ0)]. Moreover, using the approximation
dk(φ, θ) ≈ A− rk sin(θ) cos(φ− φk), which is valid for the
far-field region with A� rk, we obtain that

F (φ, θ/r,φ) ≈ 1

N

N∑
k=1

exp

{
j
2π

λ
rk[sin(θ0) cos(φ0 − φk)

− sin(θ) cos(φ− φk)]} � F̃ (φ, θ/r,φ). (2)

Note that (2) is symmetric with respect to the azimuth direc-
tion φ. Therefore, we can set φ0 = 0. For notation sim-
plicity, we also assume that the destination point is located
in the xy-plane, i.e., θ = θ0 = π

2 . Then, (2) simplifies to

F̃ (φ/r,φ) = 1
N

∑N

k=1 e−j4πr̃k sin( φ

2 ) sin(φ̃k), where r̃k = rk

λ

and φ̃k = (φk − φ
2 ). Equivalently, we can write that

F̃ (φ/z) =
1

N

N∑
k=1

e−jαzk (3)

where α = α(φ) = 4π sin(φ
2 ), z = [z1, z2, . . . , zN ] ∈

[−∞,∞]N , and the random variable zk = r̃k sin(φ̃k) is Gaus-
sian distributed with zero mean and variance σ2, i.e.,

fzk
(z) =

1√
2πσ

e
−z2

2σ2 , −∞ < z <∞. (4)

Then, for each realization of z, the sample far-field beampat-
tern can be found as

P (φ/z) = |F̃ (φ/z)|2

=
1

N
+

1

N2

N∑
k=1

e−jαzk

N∑
l=1,

l �=k

ejαzl . (5)

3. AVERAGE BEAMPATTERN AND ITS
CHARACTERISTICS

Using (4) and (5), the average beampattern for a cluster of
Gaussian distributed sensor nodes can be obtained as
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Fig. 2. Average beampatterns for both uniform and Gaussian
spatial distributions: N = 16 and 1024, σ2 = 1, R̃ = 3σ.

Pav(φ) = Ez[P (φ/z)] =
1

N
+

(
1− 1

N

) ∣∣∣e−α2σ2

2

∣∣∣2 (6)

where Ez[·] denotes the average over all realizations of z. The
term 1/N in (6) represents the mean of the beampattern in the
sidelobe region and it can be reduced by increasing N . It can
also be seen from (6) that the average beampattern has no
nulls and no sidelobes. Moreover, the mainlobe decays ex-
ponentially with a rate proportional to the variance σ2. The
average beampattern (6) is similar to the beampattern for uni-
formly distributed sensor nodes.1 However, in the latter case,
the Bessel function of the first kind results in nulls and side-
lobes in the average beampattern. It is worth noting that the
presence of sidelobes in the average beampattern increases
the chance of sidelobes with high peaks in the sample beam-
patterns.

The average beampatterns for both cases of Gaussian and
uniform spatial distributions are shown in Fig. 2, where σ2 =

1, and N ∈ {16, 1024}. Hereafter, we use σ = R̃
3 in the

case of Gaussian spatial distribution, where R̃ is defined for
uniform distribution. This assumption suggests that 99.73%
of the sensor nodes are located on a disk of radius R̃ and,
thus, the cluster areas in both cases are the same. It can be
seen from Fig. 2 that the mainlobe in the case of Gaussian
spatial distribution is wider than in the case of uniform spatial
distribution. In both cases, the width of the mainlobe can be
reduced by increasing R̃ = 3σ, i.e., by spreading the sensor
nodes over a larger area.

The 3dB Beamwidth is defined as the angle φ3dB at which
the power of the average beampattern drops 3dB below the
maximum value at φ = 0. In the case of Gaussian distributed
sensor nodes, the 3dB beamwidth can be expressed as [6]

φ3dB = 2 sin−1

(
0.0663

σ

)
. (7)

1Note that the average beampattern in the case of uniformly distributed

sensor nodes is given as [1]: Pav(φ) = 1
N

+
(
1− 1

N

) ∣∣∣2 J1(α)
α

∣∣∣2, where

J1(α) is the first order Bessel function of the first kind, α = α(φ) =

4πR̃ sin( φ

2
), and the cluster is represented by a disk of radius R̃ = R/λ.
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Fig. 3. 3dB beamwidth and 3dB sidelobe region for both uni-
form and Gaussian spatial distributions: N = 16 and 1024.

¿From (7), we can see that the 3dB beamwidth depends only
on the variance σ2 and it is independent of the number of
sensor nodes.

The 3dB Sidelobe Region is the beampattern region be-
tween the angle φSidelobe at which the mainlobe of the aver-
age beampattern reduces to 3dB above 1/N and π, i.e.,

Sidelobe Region = {φ | φSidelobe ≤ |φ| ≤ π} . (8)

In the case of Gaussian spatial distribution, φSidelobe is given
by [6]

φSidelobe = 2 sin−1

(√
ln(N − 1)

4πσ

)
. (9)

Fig. 3 shows the 3dB beamwidth and the 3dB sidelobe region
for both uniform2 and Gaussian spatial distributions versus
the normalized radius R̃ = 3σ. The beampattern in the case
of Gaussian spatial distribution has larger 3dB beamwidth and
sidelobe regions compared to the uniform case. The differ-
ence between the 3dB beamwidths for both distributions be-
comes smaller for larger normalized radius R̃ = 3σ. Larger
3dB sidelobe region for the case of Gaussian spatial distribu-
tion suggests that the mean of the sample beampattern is close
to the value 1/N over a larger area. Therefore, the sidelobes
with high peaks are less probable in the case of Gaussian spa-
tial distribution.

The Average Directivity, in the context of WSNs, repre-
sents the ability of the sensor nodes to concentrate the radi-
ated power in a certain direction. The sample directivity given
a realization of z can be expressed as

D(z) =

∫ π

−π
P (0)dφ∫ π

−π
P (φ/z)dφ

=
2π∫ π

−π
P (φ/z)dφ

(10)

where P (0) = P (0/z) = 1. The average directivity can be
defined as Dav = Ez [D(z)], and its lower bound is given by
D∗av = 2π∫

π

−π
Pav(φ)dφ

[1]. Using (6) and the expression for the

lower bound on the average directivity, D∗av, we can obtain

2Note that φSidelobe in the case of uniform pdf can be found in [1].
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D∗av =
N

1 + (N − 1) 1F1(
1
2 ; 1;−(4πσ)

2
)

(11)

where 1F1(
1
2 ; 1;−(4πσ)

2
) is the hypergeometric function of

the first kind.3

Fig. 4 shows the normalized average directivity Dav

N
and

its normalized lower bound D∗av
N

for both uniform and Gaus-
sian spatial distributions. It can be seen from the figure that
the directivity is lower in the case of Gaussian spatial distri-
bution and approaches N asymptotically with increasing the
normalized radius R̃ = 3σ.

4. RANDOM BEHAVIOR OF SAMPLE
BEAMPATTERN

Besides transmission range extension, the application of col-
laborative beamforming in the context of WSNs enables us
to limit interference to neighboring clusters. Therefore, the
complementary cumulative distribution function (CCDF) of
the beampattern level in the sidelobe region should be small
enough for any specific realization of the sensor node loca-
tions. The CCDF of the beampattern level at a given angle φ,
for power level P0, can be found as

Pr[P (φ) > P0] =

∫ ∫
x2+y2>NP0

fX,Y (x, y) dx dy (12)

where the array factor is approximated as a complex Gaussian
random varaible, i.e., F̃ (φ/z) = 1√

N
(X − jY ), and

fX,Y (x, y) =
1

2πσxσy

exp

(
−|x−mx|2

2σ2
x

− y2

2σ2
y

)
. (13)

In the case of Gaussian pdf, mx =
√

Ne−
α2σ2

2 , σ2
x = 1

2 (1 +

e−
(2α)2σ2

2 )−(e−
α2σ2

2 )2, my = 0, and σ2
y = 1

2 (1−e−
(2α)2σ2

2 ).4

3Note that in the case of uniform spatial distribution, the generalized
hypergeometric function 2F3( 1

2
, 3
2
; 1, 2, 3;−(4πR̃)2) is used instead of

1F1( 1
2
; 1;−(4πσ)2).

4Note that the corresponding characteristics in the case of uniform pdf
can be found in [1].
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4 and R̃ = 3σ = 2.

For large values of α, we can assume that mx = my = 0
and σ2

x = σ2
y = 1

2 . Then, the CCDF follows a Rayleigh
distribution and can be written as Pr[P (φ) > P0] = e−NP0 .

The CCDF for both uniform and Gaussian spatial distri-
butions are shown in Fig. 5. It can be seen from the figure that
for large values of N , the CCDF in the case of Gaussian pdf
is lower than the CCDF in the case of uniform pdf. Therefore,
the probability of exceeding a certain beampattern value P0 is
less in the case of Gaussian spatial distribution. Moreover, the
aforementioned Rayleigh approximation remains valid in the
case of Gaussian pdf, while it deviates from the actual CCDF
in the case of uniform spatial distribution.

Another characteristic, which is used to describe the ran-
dom behavior of sample beampattern, is the outage probabil-
ity of sidelobes Pout. This characteristic can be used to esti-
mate the maximum possible interference to other clusters in
the neighborhood, and the probability of a given interference
level to other clusters in the neighborhood. The upper bound
on the outage probability Pout in the case of Gaussian spatial
distribution can be found as

Pout ≤ 8
√

πσ
√

NP0e
−NP0 , NP0 >

1

2
. (14)

Fig. 6 illustrates the upper bounds on the sidelobe maxi-
mum with a given outage probability for both uniform5 and
Gaussian spatial distributions. It can be seen that for the same
number of sensor nodes N and outage probability Pout, the
level of interference to neighboring clusters is lower in the
case of Gaussian spatial distribution and the value of the max-
imum peak in the sidelobe region increases with increasing
the normalized radius R̃ = 3σ.

5. CONCLUSIONS

A Gaussian pdf was proposed as a realistic model for spatial
distribution of sensor nodes within a cluster of WSN. The av-

5Note that the upper bound on the outage probability in the
case of uniform spatial distribution is given as [1]: Pout ≤
4
√

πR̃
√

NP0e−NP0 , NP0 > 1
2

.
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Fig. 6. The upper bounds on the sidelobe maximum with a
given outage probability Pout for both uniform and Gaussian
spatial distributions: N=16.

erage beampattern and its characteristics were derived. The
distribution function of the beampattern level in the sidelobe
region and the upper bound on the outage probability of the
sidelobes were analyzed. It was shown that the collaborative
beamforming for WSN provides better performance charac-
teristics if sensor nodes are deployed according to a Gaussian
pdf rather than a uniform pdf.
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