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ABSTRACT
Collaborative beamforming enables nodes in a wireless net-
work to transmit a common message over long distances
in an energy efficient fashion. However, the process of
making available the same message to all collaborating
nodes introduces delays. The authors recently proposed a
MAC-PHY cross-layer scheme that enables collaborative
beamforming with significantly reduced collaboration over-
head. The method requires knowledge of node locations and
internode channel coefficients. In this paper, the performance
of that approach is studied analytically in terms of average
beampattern and symbol error probability (SEP) under real-
istic conditions, i.e., when imperfect channel estimates are
used and when there are phase errors in the contributions of
the collaborating nodes at the receiver.

Index Terms— collaborative beamforming, cross-layer
approach for wireless networks, imperfect conditions

I. INTRODUCTION
Distributed, or collaborative, beamforming has been of

considerable recent interest as a preferred solution for long-
distance transmission in wireless networks, due to its energy
efficiency [2],[3]. In conventional distributed beamforming
schemes, a set of distributed nodes (called collaborating
nodes) act as a virtual antenna array and form a beam to
cooperatively transmit a common signal arising from a source
node. Using knowledge of network coordinates, each col-
laborating node adjusts its initial phase so that the resulting
beampattern focuses in the direction of the desired desti-
nation. The requirement that all collaborating nodes have
access to the same message signal means that source nodes
must share their message signals with collaborating nodes
before beamforming. To study network performance, one
must take into account the overhead (information-sharing
time) required for node collaboration. If a time-division
multiple-access (TDMA) scheme were to be employed, the
information-sharing time would increase proportionally to
the number of source nodes.
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The authors recently proposed a MAC-PHY cross-layer
technique in [1] and [4], based on the idea of collaborative
beamforming of [3], to reduce the time required for infor-
mation sharing and to allow simultaneous multiple beams.
The main idea is as follows: for information-sharing, we
consider a real physical model in which collaborating nodes
receive linear mixtures of transmitted packets. Subsequently,
each collaborating node transmits a weighted version of its
received signal. The weights allow packets bound to the
same destination to add coherently at the destination node.
Each collaborating node computes its weight based on the
estimated channel coefficients between sources and itself,
and also based on estimates of node coordinates. In [1] and
[4] the analysis was performed under the assumption that all
required estimates are perfect. In this paper, we investigate
performance under imperfect conditions, i.e., when there are
channel estimation errors and phase errors.

II. SYSTEM MODEL AND PROPOSED SCHEME

The notation used here is illustrated in Fig. 1. For simplic-
ity, let us assume that sources and destinations are coplanar.
The network is divided into clusters, so that nodes in a cluster
can hear each other’s transmissions. During slot n, source
nodes t1, . . . , tK in cluster C tend to communicate with
nodes q1, . . . , qK that belong to clusters C1, . . . , CK , respec-
tively. The beamforming is performed by nodes in cluster C.
The N collaborating nodes, designated as c1, . . . , cN , are
assumed to be uniformly distributed over a disk of radius
R. We denote the location of ci in polar coordinates with
respect to the origin of the disk by (ri, ψi). Let dim represent
the distance between ci and the destination qm, and d0m

represent the distance between the origin of the disk and
qm. If φm is the azimuthal angle of qm with respect to the
origin of the disk, the polar coordinates of qm are (d0m, φm).
Moreover, let di(φ) denote the distance between ci and some
receiving point with polar coordinate (d0m, φ).
We further make the following assumptions: (1) A slotted

packet system is considered, in which each packet requires
one slot for its transmission. Perfect synchronization is as-
sumed between nodes in the same cluster. Nodes operate un-
der half-duplex mode, i.e., they cannot receive while they are
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Fig. 1. Illustration of notation.

transmitting. (2) Nodes transmit packets consisting of phase-
shift keying (PSK) symbols each having the same power σ2

s .
(3) Communication takes place over flat fading channels.
The channel gain during slot n between source ti and
collaborating node cj is denoted by aij(n). For intra-cluster
communications small-scale fading plays the dominant role.
Thus, for a fixed n, we model aij(n) as circularly symmetric
complex Gaussian random variables with zero means and
variances σ2

a (i.e., this is a Rayleigh fading model). The
gains of different paths are assumed to be independent and
identically distributed (i.i.d.). The gain of a given path is
constant during the slot duration. (4) For inter-cluster com-
munications, large-scale fading plays the dominant role. We
assume that the distances between collaborating nodes and
destinations are much greater than the maximum distance
between source and collaborating nodes. Thus, the complex
baseband-equivalent channel gain between nodes ci and qm
during beamforming equals bmej 2π

λ
dim [6], where λ is the

signal wavelength and bm is the path loss between the
center of the disk containing the collaborating nodes and
the destination.
In slot n, all source nodes within the cluster C simultane-

ously transmit their packets. The packet transmitted by node
tj consists of L symbols sj(n) � [sj(n; 0), . . . , sj(n;L−1)].
Due to the broadcast nature of the wireless channel, non-
active nodes in cluster C hear a collision, i.e., a linear
combination of the transmitted symbols. More specifically,
node ci hears the signal

xi(n) =

K∑
j=1

aji(n)sj(n) + wi(n) (1)

where wi(n) = [wi(n; 0), . . . , wi(n;L−1)] represents noise
at the receiving node ci. The noise is assumed to be zero-
mean with covariance matrix σ2

wIL, where IL denotes the
L× L identity matrix.

Suppose that in slot n + m, m = 1, . . . ,K , the collab-
orating nodes need to beamform sm(n) to destination qm.
Each collaborating node ci transmits the signal

x̃i(n+m) = xi(n)μma
∗

mi(n)e−j 2π
λ

dim (2)

where e−j 2π
λ

dim is the initial phase of ci. μm is a scalar
used to adjust the transmit power; it is the same for all
collaborating nodes, and is on the order of 1/N .
Given the collaborating nodes at radial coordinates r =

[r1, ..., rN ] and azimuthal coordinates ψ = [ψ1, ..., ψN ], the
received signal at an arbitrary location with polar coordinates
(d0m, φ), is

y(φ;m|r,ψ) =
N∑

i=1

bmx̃i(n+m)ej 2π
λ

di(φ) +v(n+m) (3)

where v(n+m) represents noise at the receiver during slot
n+m. The covariance matrix of v(n +m) equals σ2

vIL.
The received signal at the destination qm during slot n+m

is

y(φm;m|r,ψ) =

N∑
i=1

bmx̃i(n+m) + vm(n+m) .(4)

It was shown in [4] that, as N → ∞ and omitting
the noise, y(φm;m|r,ψ) → Nμmbmσ

2
asm(n). Thus, the

destination node qm receives a scaled version of sm(n). The
beamforming step is completed in K slots, reinforcing one
source signal at a time. Compared with the scheme in [3], the
information sharing time is reduced from K to 1. Multiple
beams can be formed in one slot when source packets have
distinct destinations. In the rest of the paper, for simplicity
we will consider only the case in which a single beam is
formed during slot n+m, focusing on destination qm.

III. AVERAGE BEAMPATTERN UNDER
IMPERFECT CONDITIONS

The beampattern represents the distribution of received
power along all azimuthal angles. We showed in [4] that,
under perfect conditions the average beampattern is of a
form similar to [3], with increased sidelobe level. In this
section, we discuss effects of imperfect channels and phase
on average beampattern, respectively.

III-A. Imperfect Channels
We model âmi = ami + δami as the imperfect estimate

of ami, where δami is the estimation error. The estima-
tion errors are i.i.d. Gaussian random variables, δami ∼
CN (0, σ2

δ ). The average beampattern with imperfect chan-
nels can be expressed as

P̃av(φ) = E{|y(φ;m|r,ψ)|2} = Pav(φ) + δPav(φ) (5)

where Pav(φ) is the average beampattern related to perfect
channels ami, and δPav(φ) is the average beampattern
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related to the estimation error δami. Following steps similar
to those leading to Pav(φ) in [4], one can obtain

δPav(φ) = μ2
mb

2
mE

{
|sm|

2
N∑

i=1

|ami|
2|δami|

2

+

K∑
j=1
j �=m

|sj |
2

N∑
i=1

|δami|
2|aji|

2 +

N∑
i=1

|δami|
2|wi|

2

}

= N2μ2
mb

2
mσ

2
sσ

4
a

(
Kσ2

δ

Nσ2
a

+
σ2

δ

Nγ1σ2
a

)
∝
σ2

δ

σ2
a

(6)

where γ1
�
= σ2

sσ
2
a/σ

2
w represents the average SNR at the

collaborating nodes. Note that δPav(φ) is actually a constant
independent of φ. In other words, the effect of imperfect
channels on average beampattern is an increased sidelobe
level.

III-B. Imperfect Phase
Under imperfect phase, each collaborating node ci will

transmit the signal x̃i(n + m)ejτi , where the τi represents
the phase error, which is assumed i.i.d. with respect to i. We
use the same model as in [3] for the phase errors. Regarding
how to obtain the initial phase, two cases (closed-loop and
open-loop) are considered (see [3] for details):
(1) For the closed-loop case, imperfect phase corresponds

to the phase offset due to the phase ambiguity caused by
carrier phase jitter or offset between the transmitter and
receiver nodes. We assume that the phase error τ follows a
Tikhonov distribution, which is a typical phase jitter model
for phase-locked loop (PLL) circuits.
(2) For the open-loop case, imperfect phase results from

estimation errors in the location parameters ri and ψi. We
assume the corresponding radius error δri is uniformly
distributed over [−rmax, rmax], and the angle error δψi is
uniformly distributed over [−ψmax, ψmax]. The radius and
angle errors are further assumed to be mutually independent
random variables, independent of ri and ψi.
Based on the above phase error models, we can show that

the expressions of the average beampattern are similar to the
results in Section VI of [3] with the only difference being
a scaling factor. Thus, as in [3], the basic effect of these
phase errors is in reducing the power in the main lobe. The
derivation is similar to that in [3] and is omitted here due to
space limitations.

IV. SEP UNDER IMPERFECT CONDITIONS
Under perfect conditions, the received signal (one sample)

at the destination is given by

y(φm;m) = μmbm

N∑
i=1

|ami|
2sm + μmbm

N∑
i=1

a∗miηi + v , (7)

where ηi �
∑K

j=1
j �=m

ajisj + wi. We showed in [1] that ηi ∼

CN
(
0, σ2

η

)
where σ2

η � (K − 1)σ2
aσ

2
s + σ2

w.

Given ami, the instantaneous signal-to-interference-plus-
noise ratio (SINR), γ, equals

γ =
μ2

mb
2
mσ

2
sξ

2

μ2
mb

2
mσ

2
ηξ + σ2

v

(8)

where ξ �=
∑N

i=1 |ami|
2 follows an Erlang distribution (ξ ∼

Erlang(N, σ2
a)).

Given K , the SEP for M-PSK symbols under perfect
conditions is [1], [5]

Ps(K) =
1

π

∫ (M−1)π
M

0

∫ ∞

0

exp

(
−

sin2(π/M)

sin2 ϕ
· γ

)

×
ξN−1e

−
ξ

σ2
a

σ2N
a (N − 1)!

dξdϕ . (9)

IV-A. Imperfect Channels
Taking channel errors into account, the received signal at

the destination is given by

y(φm;m) = μmbm

N∑
i=1

|ami|
2sm + μmbm

N∑
i=1

amiδa
∗

mism

+μmbm

N∑
i=1

(a∗mi + δa∗mi)ηi + v . (10)

Since the destination node does not have knowledge
of δami, the term μmbm

∑N
i=1 amiδa

∗
mism represents in-

terference. Thus, in the interference term, ami and δami

are coupled together, and the exact SEP would involve
integration of all of the 2N random variables (ami and δami,
i = 1, . . . , N ). In the sequel we will use an approximation
that simplifies this analysis.
Let us define

κ = μmbm

N∑
i=1

[amiδa
∗

mism + (a∗mi + δa∗mi)ηi] . (11)

It is easy to show that, given ami, E{κ} = 0 and

σ2
κ = E{|κ|2} = μ2

mb
2
m(σ2

η+σ2
sσ

2
δ )ξ+μ2

mb
2
mσ

2
ηNσ

2
δ . (12)

According to the central limit theorem, when N is large, κ is
approximately normally distributed. Let us thus approximate
the distribution of κ as κ ∼ CN (0, σ2

κ). Taking into account
the independence of κ and v, the approximate instantaneous
SINR, γch, equals

γch =
μ2

mb
2
mσ

2
sξ

2

μ2
mb

2
m(σ2

η + σ2
sσ

2
δ )ξ + μ2

mb
2
mσ

2
ηNσ

2
δ + σ2

v

(13)

which contains only a single random variable ξ. Finally, to
calculate the SEP under imperfect channel conditions, let us
substitute γch for γ in (9). The techniques in section IV-A
of [1] can be used to obtain simple bounds for SEP.
Simulation: Fig. 2 shows the SEP versus σ2

δ/σ
2
a. As

expected, SEP increases with increasing σ2
δ . The analytical

result based on (13) matches well experimental results for a
wide range of values of σ2

δ .
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IV-B. Imperfect Phase
Imperfect phase has two effects on the receiver: signal

power reduction and phase distortion [2]. Assuming that the
phase distortion is compensated for by the coherent receiver
(e.g., by pilots), here we focus on signal power reduction
only.
We define the power reduction coefficient Aτ =

Perr/Pideal ≤ 1, where Perr is the average received signal
power with phase error and Pideal is the average signal power
under perfect phase.
Taking phase errors into account, the received signal at

the destination is given by

y(φm;m) = μmbm

N∑
i=1

|ami|
2ejτism

+μmbm

N∑
i=1

a∗miηie
jτi + v , (14)

where τi is the phase error of collaborating node ci.
Note that the statistics of ηie

jτi are the same as those of
ηi; so phase errors do not change the statistical behavior of
the interference term.
Assuming we use a coherent receiver, the instantaneous

SINR, γph, equals

γph =
μ2

mb
2
mσ

2
s |

∑N
i=1 |ami|2ejτi |2

μ2
mb

2
mσ

2
ηξ + σ2

v

. (15)

Since |ami|2 and ejτi are coupled, the exact SEP includes
integration with respect to ami and τi (i = 1, . . . , N ), which
is computationally complex. To facilitate analysis we make
the following approximation for γph:

γph ≈ Aτ ·
μ2

mb
2
mσ

2
s(

∑N
i=1 |ami|

2)2

μ2
mb

2
mσ

2
ηξ + σ2

v

= Aτ · γ . (16)

In other words, γph is approximated by the instantaneous
SINR under perfect conditions scaled down by a coefficient
Aτ .
It can be shown that

Aτ =
Perr

Pideal
=

2 + (N − 1)
∣∣E {

ejτi
}∣∣2

N + 1
, (17)

where
∣∣E {

ejτi
}∣∣2 depends on the specific phase error model

used. Based on the phase error models in section III-B,∣∣E {
ejτi

}∣∣2 has been derived in [3].
Simulation: In Fig. 3(a), we show the SEP as a function of

loop SNR ρτ (closed-loop case). The variance of the phase
error is 1/ρτ . For the analytical SEP, we directly use the
results in [3] to calculate

∣∣E {
ejτi

}∣∣2 and obtain Aτ in (17).
As observed, ρτ > 10 dB may be necessary to achieve a
satisfactory SEP. Fig. 3(b) shows the SEP vs. rmax/R and
ψmax/(2π) (open-loop case), where both radius and angle
errors are considered. One can see that the phase error in the
open-loop case can severely degrade the SEP performance.

Thus, it is important to investigate techniques that enable
accurate location estimation. In both figures, the analytical
result based on (16) match well the experimental results for
a wide range of phase errors.

V. CONCLUSIONS
We have considered the cross-layer collaborative beam-

forming approach of [1] and [4], and we have analyzed
its performance under imperfect conditions. For the average
beampattern, the principal effect of imperfect channel infor-
mation is increased sidelobe level, and the principal effect
of imperfect phase information is reduced mainlobe power.
We have provided approximate analytical expressions for the
SEP under imperfect conditions, which show the effects of
imperfect channel and phase on that quantity.
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