
Channel-Adaptive Frequency-Domain Relay
Processing in Multicarrier Multihop Transmission

Wenyi Zhang, and Urbashi Mitra
Ming Hsieh Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089
Email: {wenyizha, ubli}@usc.edu

Abstract—Conventionally, a memoryless analog repeater at
the relay of a multihop transmission system amplifies the signal
received from its incoming link, and retransmits the amplified
signal to its outcoming link. In the frequency domain, such an
amplification essentially is ideal bandpass filtering, treating all
the frequency components uniformly. For multicarrier systems
like orthogonal frequency division multiplexing (OFDM) over
frequency-selective channels, such a frequency-flat amplification
is inadequate to exploit the benefits of adaptive processing at
the relay. This paper analyzes the potential performance gain of
non-uniform frequency-domain relay amplification, in which the
gain coefficients for subcarriers are adapted from the frequency
responses of both the incoming and outcoming links. An end-to-
end achievable rate optimization problem is formulated. A simple
heuristic power allocation algorithm is proposed. Numerical
results indicate that the heuristic algorithm achieves consider-
able performance gains compared to conventional amplify-and-
forward relay processing.
Index Terms—End-to-end achievable rate, frequency-domain

relay processing, OFDM, multicarrier, multihop

I. INTRODUCTION
A multihop transmission system consists of a tandem of

communication links, in which information flows through
these links from the source at one end to the destination at
the other end. Such systems have been persistently studied
since the early days of communication; see [1] and references
therein. The multihopping approach dramatically benefits the
channel signal-to-noise ratio (SNR) by splitting a long trans-
mission distance into several shorter hops, and thus is attractive
in various systems like digital subscriber line (DSL), wireless
mesh networks, underwater acoustic networks, and optical
networks.
Among various processing techniques in multihop transmis-

sion systems, the decode-and-forward (DF) approach achieves
the capacity, that is, the maximum end-to-end information
rate. This fact readily follows from a cut-set bounding argu-
ment [3]. In several practical systems, however, due to other
considerations like complexity or latency [1], the relay nodes
may adopt simpler signal processing techniques, for example,
memoryless linear amplify-and-forward (AF). Conventionally,
such an “analog repeater” type of relaying can be viewed as
bandpass-filtering the received signal with an ideal bandpass
filter, whose frequency-domain response uniformly scales all
the frequency components of the received signal.
Despite its simplicity, the “analog repeater” type of relaying

fails to exploit the benefits of adapting the relay processing to

the channel frequency response. This is especially the case
when the mutlihop transmission system utilizes multicarrier
modulation like orthogonal frequency division multiplexing
(OFDM) and the communication links exhibit frequency-
selective channel responses. In this paper, we allow the relay
to linearly amplify the different subcarriers of the received
multicarrier signals using different amplification factors, and
to permute (or re-index) the subcarriers such that one sub-
carrier of the received signal is adaptively “wired” to another
subcarrier for retransmission.
Both the relay amplification and subcarrier permutation

should be adapted from the channel responses of the incoming
and outcoming communication links of the multihop trans-
mission system. We formulate the problem in terms of the
end-to-end achievable mutual information, as a function of the
source/relay power allocation and the subcarrier permutation.1
Unfortunately, since this function lacks the desired concavity
property, it is not readily amenable to Lagrangian-type of
solutions like water-filling. This is in distinct contrast to single-
hop multicarrier channels, for which water-filling achieves the
channel capacity [3]. We thus propose a heuristic source/relay
power allocation and subcarrier permutation algorithm, based
upon the idea of individual link rate maximization and permu-
tation loss minimization. We perform Monte Carlo simulations
to illustrate that, the heuristic algorithm achieves considerable
performance gain compared to conventional “analog repeater”
type of relaying without channel adaptation, and furthermore
is often comparable to DF relay processing.
The remainder of this paper is organized as follows. We

derive the end-to-end multihop multicarrier channel model
in Section II, and propose the heuristic source/relay power
allocation and subcarrier permutation algorithm in Section III.
In Section IV we present the simulation results and discussion.
Finally we conclude the paper in Section V.

II. MULTIHOP MULTICARRIER CHANNEL MODEL
In this paper, we shall consider a two-hop system, with

each link consisting of N subcarriers. With the time index
suppressed, the nth subcarrier of the mth hop is written in
discrete-time baseband form as

Ym[n] =
√

Am[n]Xm[n] + Zm[n], (1)

1A similar problem formulation was addressed in [2], and some iterative
algorithms were given therein.
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Fig. 1. Schematic diagram of the relay processing. Note that the additional
standard multicarrier modulation/demodulation steps such as adding/removing
cyclic prefix and parallel/serial conversions are not explicitly displayed.

for m = 1, 2 and n = 1, . . . , N . The complex-valued channel
inputs {Xm[n]} have an average power constraint across the
N subcarriers,

E

[
N∑

n=1

|Xm[n]|2

]
≤ Pm, m = 1, 2. (2)

The additive noises are modeled as circularly symmetric com-
plex Gaussian, with zero mean and normalized unit variance,
and mutually independent across the N subcarriers. The non-
negative channel gain coefficients, {Am[n]}, are modeled as
deterministic and exactly known throughout the transmission.
The two communication links join at a relay node (see

Figure 1). The operation of the relay is as follows. The relay
first demodulates the received signals of the N subcarriers,
Y1 :=

[
Y1[1], . . . ,Y1[N ]

]T, by performing standard demodu-
lation of multicarrier transmission systems, such as removing
the cyclic prefix, serial-to-parallel conversion, and discrete
Fourier transform (DFT). In the second and key step, the relay
permutes the elements of the Y1 vector according to a certain
permutation function π(·), obtaining

Y1
(π) :=

[
Y1[π(1)], . . . ,Y1[π(N)]

]T
, (3)

and subsequently amplifies the N elements of Y1
(π) to obtain

X2 :=
[√

α[1]Y1[π(1)], . . . ,
√

α[N ]Y1[π(N)]
]T

. (4)

Note that the amplification factors {α[n]}N
n=1 are generally

different for different elements of Y1
(π). Finally, the relay

forms the transmitted multicarrier symbol corresponding to X2,
by performing standard modulation procedure of multicarrier
transmission systems (inverse DFT, adding the cyclic prefix,
and parallel-to-serial conversion).
Let us examine the end-to-end channel input-output rela-

tionship under the preceding frequency-domain relay process-
ing. The nth subcarrier channel equation can be readily derived
as

Y2[n] =
√

A1[π(n)]A2[n]α[n]X1[π(n)]

+
(√

A2[n]α[n]Z1[π(n)] + Z2[n]
)

. (5)

By enforcing the average power constraint (2), we may
rewrite Xm[n] =

√
γm[n]X̃m[n], for m = 1, 2. The non-

negative power allocation vectors γm :=
[
γm[1], . . . , γm[N ]

]T
satisfy the average power constraint

N∑
n=1

γm[n] = Pm, m = 1, 2; (6)

and the normalized channel inputs X̃m[n] have zero mean
and unit variance. Therefore, Y1[π(n)] has a variance of(
A1[π(n)]γ1[π(n)] + 1

)
, and X2[n] =

√
α[n]Y1[π(n)] has a

variance of α[n]
(
A1[π(n)]γ1[π(n)] + 1

)
, which is equivalent

to γ2[n]. So we have

α[n] =
γ2[n]

A1[π(n)]γ1[π(n)] + 1
, (7)

and (5) can eventually be reduced to

Ỹ2[n] =
√

ρ[n]X̃1[n] + Z̃[n], (8)

where

ρ[n] :=
A1[π(n)]A2[n]γ1[π(n)]γ2[n]

A1[π(n)]γ1[π(n)] + A2[n]γ2[n] + 1
(9)

and Z̃[n] ∼ CN(0, 1), for n = 1, . . . , N .
We note that the preceding derivation can easily accom-

modate both full-duplex and half-duplex relaying transceivers.
For half-duplex transceivers we only need to properly scale
the model, namely, double the average power constraint P1,2

and halve the resulting information rate.

III. POWER ALLOCATION AND RELAY PROCESSING
For a given permutation function π(·) and a given set

of power allocation vectors γ1,2, the information-theoretic
supremum of the achievable rate of the end-to-end multicarrier
channel is

R =

N∑
n=1

log(1 + ρ[n]), (10)

with the inputs of the N subcarriers mutually independent
and circularly symmetric complex Gaussian. Based upon (10),
in principle one can further maximize R over all possible
π(·) and γ1,2. For single-hop multicarrier channels, such
a problem is readily solved by the celebrated water-filling
technique [3], as a direct consequence of the Karush-Kuhn-
Tucker (KKT) condition for convex optimization [4]. For

3230



our two-hop problem, however, we observe that the objective
function is not concave. First, for N subcarriers, there are N !
possible permutation functions. Exhaustively enumerating all
these permutation functions is prohibitive even for moderate
values of N . Second, as can be shown by evaluating the
Hessian matrix of R(γ1,2), for every fixed π(·), in general
the function R(γ1,2) is not concave. As a consequence, the
KKT approach like water-filling cannot ensure the optimality
of its solution, let alone in this problem the solution itself is
usually hard to obtain, even numerically.
It is useful to rewrite (10) utilizing (9) as

R =

N∑
n=1

log (1 + A1[n]γ1[n]) +

N∑
n=1

log (1 + A2[n]γ2[n])

−

N∑
n=1

log (1 + A1[π(n)]γ1[π(n)] + A2[n]γ2[n]) .(11)

In (11), the first two sums are respectively the achievable
rates of the two communication links with their own power
allocation vectors, without the constraint of relay processing.
The third sum reflects the effect of relay processing, and may
be interpreted as the achievable rate as if the source and the
destination simultaneously transmit to the relay node, over the
(permuted) incoming link and the (reversed) outcoming link,
respectively.
From (11), we propose a heuristic algorithm to design the

permutation function and the power allocation vectors. The
basic idea is a as follows. First, we maximize the first two
sums in (11), which is achieved by water-filling the two
communication links separately. Second, having obtained the
water-filling power allocation vectors, we seek to minimize the
third sum in (11) by properly choosing a permutation function.
As can be shown by an induction proof, the permutation
function that minimizes the third sum is given by permuting
the ith largest element of {A1[n]γ1[n]}N

n=1 to match the ith
largest element of {A2[n]γ2[n]}N

n=1, for i = 1, . . . , N , i.e.,
matching according to the SNR rankings of the subcarriers.
Thus the algorithm follows greedy procedures in nature.
In the algorithm implementation, instead of always allo-

cating power to all N subcarriers, we allocate power only
to the best k (1 ≤ k ≤ N ) out of the N subcarriers,
and choose the parameter k which maximizes the resulting
achievable rate. This modification usually leads to a substantial
rate gain, especially when the average power per subcarrier
P1,2/N becomes small. Another modification which speeds
up the search for k from 1 to N is that, if for k subcarriers
the water-filling power allocation leads to certain “inactive”
subcarriers, i.e., subcarriers with zero allocated power, then we
can directly skip k and proceed to compute the water-filling
solution for k + 1. This can be validated by noting that it is
always sub-optimal to permute an “active” incoming subcarrier
to an “inactive” outcoming subcarrier, and vice versa.
The detailed algorithm is given as follows.

Power Allocation/Relay Processing Algorithm
Initialization: Sort each of the channel gain vectors
{A1,2[n]}N

n=1 in descending order, and re-index the elements
of the sorted vectors from 1 to N . For any two subcarriers in
a sorted vector, we shall say that the subcarrier with a larger
index is “worse” than the other.
Execution: For k from 1 to N :

• Step 0: Enforce the worst (N − k) subcarriers to be
allocated zero power, i.e., γm[n] = 0 for m = 1, 2,
n = k + 1, . . . , N .

• Step 1: For the best k subcarriers, solve the water-filling
problem of the two communication links separately, ob-
taining

γm[n] = max

(
1

λm
−

1

Am[n]
, 0

)
, (12)

for m = 1, 2, n = 1, . . . , k, where λm > 0 is chosen
such that

k∑
n=1

γm[n] = Pm, m = 1, 2; (13)

• Step 2: If Step 1 yields any γm[n] = 0, let R̃[k] =
R̃[k − 1] and skip Step 3.

• Step 3: Compute the achievable rate following (11) as

R̃[k] =

k∑
n=1

[
log max

(
A1[n]

λ1
, 1

)
+ log max

(
A2[n]

λ2
, 1

)

− log

(
max

(
A1[n]

λ1
, 1

)
+ max

(
A2[n]

λ2
, 1

)
− 1

)]
(14)

Output: The achievable rate is R = maxk=1,...,N R̃[k].
For each link, only the subcarriers with the largest k∗ =
argmaxk=1,...,N R̃[k] channel gain coefficients are allocated
power using the water-filling technique. The permutation func-
tion is chosen such that the subcarrier with the ith largest
channel gain coefficient in the incoming link is connected to
the subcarrier with the ith largest channel gain coefficient in
the outcoming link, for i = 1, . . . , k∗.

IV. NUMERICAL STUDY
In this section, we study the performance of the algorithm

proposed in Section III, via Monte Carlo simulations as a
theoretical analysis appears elusive.

A. Simulation Setup
We consider the tandem of two multicarrier links each

with N subcarriers. To obtain the channel gain coefficients
{Am[n]}N

n=1 for m = 1, 2, we take N consecutive samples
from a circularly symmetric complex first-order autoregressive
(AR) Gaussian process,

Hm[n] =
√

1 − κ2Hm[n − 1] + κWm[n], n = 1, . . . (15)

where Hm[0] and {Wm[n]}∞n=1 are mutually independent
and CN(0, 1)-distributed, and the innovation rate parameter
0 < κ ≤ 1 characterizes the degree of correlation among the
samples of Hm[·]. We then obtain the non-negative channel
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gain coefficient Am[n] as Am[n] = |Hm[n]|2. Note that
because Hm[n] ∼ CN(0, 1) marginally, we have that each
Am[n] is a sample of a standard exponentially distributed
random variable.
We perform Monte Carlo simulation to repeatedly generate

the channel gain coefficients {A1,2[n]}N
n=1, for which we

compute the following different end-to-end achievable rates:
1) Rdf/wf : rate achieved by DF, with the source and the
relay performing water-filling power allocation for their
own links separately. Since the relay fully decodes and
re-encodes the transmitted message, the two links do
not interact with each other. This is the capacity of the
multicarrier multihop transmission system.

2) Rdf : rate achieved by DF without water-filling. The
source and the relay simply distribute the power uni-
formly over all subcarriers.

3) R∗: rate achieved by the power allocation and relay
processing algorithm in Section III.

4) Raf : rate achieved by conventional AF with uniform
power allocation and uniform relay amplification, and
without subcarriers permutation.

B. Results and Discussion
In Figure 2 we plot the empirical cumulative distribution

functions (CDF) of the achievable rates. The CDF of the
optimal DF achievable rate Rdf/wf dominates those of DF
without water-filling and channel-adaptive frequency-domain
relay processing, and these latter two dominate that of con-
ventional AF. Comparing the CDF of R∗ and Rdf , we observe
that R∗ tends to achieve fewer high rates, while Rdf tends to
achieve more low rates. On average, the empirical means of
R∗ and Rdf are approximately comparable.
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Fig. 2. The empirical CDF of the achievable rates. Also displayed in short
vertical bars are the empirical means of these achievable rates. Simulation
parameters are N = 128, (P1, P2) = (256, 128), κ2 = 0.1, and the
simulation runs 1000 times.

We further plot in Figure 3 the empirical CDF of the ratios
R∗/Rdf/wf , Rdf/Rdf/wf , and Raf/Rdf/wf . It is evident that
the channel-adaptive power allocation and relay processing
algorithm provides a substantial rate gain compared to con-
ventional AF, and can be roughly comparable with DF without

water-filling. For the simulation parameters used in generating
Figure 3, R∗ can usually achieve more than 80% of Rdf/wf ,
the capacity of the transmission system.
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Fig. 3. The empirical CDF of the ratio of the achievable rates to Rdf/wf .
Simulation parameters are the same as that in Figure 2.

V. CONCLUSIONS
As the paradigm of communication shifts from point-to-

point links to connected networks, there arise numerous novel
signal processing problems in designing and analyzing effi-
cient communication schemes. In this paper, we formulate
the problem of channel-adaptive frequency-domain relay pro-
cessing in multicarrier multihop transmission systems, and
provide a preliminary and sub-optimal heuristic solution to
it.2 A limited amount of signal processing properly exploiting
the channel responses can yield substantial performance im-
provement compared to conventional non-adaptive schemes.
The central open problem in this paper is the exact solution

of the end-to-end information rate maximization problem. The
solution of this problem boils down to a hybrid of a non-
convex programming and a combinatorial programming, both
of which appear to be hard to solve. Therefore it would also
be of particular interest to derive other heuristic algorithms
showing improvement upon the algorithm proposed in this
paper, as well as tighter upper bounds than the DF capacity.
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