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ABSTRACT

We consider the jointly optimal allocation of transmission power
and channel resources (such as time and bandwidth) for an orthogo-
nal amplify-and-forward (AF) pairwise cooperation scheme. In par-
ticular, we derive a simple efficient algorithm for determining the
joint allocations required to operate at any point on the boundary
of the achievable rate region. The algorithm is based on a closed-
form solution, derived herein, for the optimal power allocation for a
given channel resource allocation, and on showing that the channel
resource allocation problem is quasi-convex.

Index Terms— Cooperative Communication, Amplify-and-
Forward, Relaying, Multiple-Access, Resource Allocation

1. INTRODUCTION

The growing demand for reliable spectrally-efficient wireless com-
munication has led to a resurgence of interest in systems in which
nodes cooperate in the transmission of their messages to a desti-
nation node; e.g., [1]. Full-duplex cooperation is often difficult to
realize, because it requires electrical isolation between the transmit-
ting and receiving circuits at each node. Half-duplex cooperative
systems (e.g., [2]) avoid the need for such isolation by constrain-
ing the cooperation scheme so that the source nodes do not simul-
taneously transmit and receive over the same channel. The subclass
of half-duplex schemes with orthogonal components (e.g., [3]) con-
strains the source nodes to use orthogonal channels, and hence en-
ables “per-user” decoding at the destination node, rather than joint
decoding; thus simplifying the receiver at the destination node. Mo-
tivated by this simplicity, we will consider orthogonal (half-duplex)
cooperation schemes in this paper.

A feature of orthogonal pairwise cooperation schemes is that
they can be decomposed into two parallel relay channels, each with
orthogonal components [4–6]. In this paper we will focus on the
amplify-and-forward (AF) relaying strategy [3, 7], because it is the
simplest in terms of the hardware requirements of the cooperating
nodes. As such, the cooperative scheme we will consider is a gen-
eralization of the orthogonal AF scheme in [3]. It was shown in [8]
that for scenarios in which channel state information is available, the
power allocation that maximizes the weighted sum rate for a given
channel resource allocation can be efficiently found. The purpose of
the present paper is to develop a simple, efficient algorithm for joint
power and channel resource allocation for the considered coopera-
tion scheme.
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Fig. 1. A frame of the orthogonal half-duplex amplify-and-forward
cooperation scheme under consideration.

The direct formulation of the joint power and resource alloca-
tion problem for this scheme is not convex, and this suggests that it
might be a difficult problem to solve. However, we will show that
for a given target rate of one node, the maximum achievable rate of
the other node can be written as a convex function of the transmis-
sion powers and a quasi-convex function of the resource allocation
parameter. Furthermore, using the Karush-Kuhn-Tucker (KKT) op-
timality conditions (e.g., [9]), we derive a closed-form solution for
the optimal power allocation for a given resource allocation. By
combining this closed-form solution with the quasi-convexity of the
maximum achievable rate in the resource allocation parameter, a
simple efficient algorithm for the jointly optimal power and chan-
nel resource allocation is obtained. In addition to the computational
efficiencies that this approach provides, the ability to directly control
the rate of one of the nodes can be convenient in the case of hetero-
geneous traffic at the cooperative nodes, especially if one node has a
constant rate requirement and the other is dominated by “best effort”
traffic.

2. SYSTEMMODEL AND DIRECT FORMULATION

We will consider a system in which two source nodes (Nodes 1 and
2) wish to cooperate in the transmission of messages to a destination
node (Node 0). In order to enable simple implementation, we will
adopt the orthogonal half-duplex amplify-and-forward cooperation
scheme illustrated in Fig. 1, which is a mild generalization of the
scheme proposed in [3]. Each frame of the scheme consists of four
time blocks, with the first two blocks being of fractional length r/2
and the second two blocks having fractional length r̂/2, where r̂ =
1 − r.1 In the first block, Node 1 transmits its codeword B1 with
power P11 while Node 2 listens. In the second block, Node 2 works
as a relay for Node 1; it amplifies the signal received in the first block
by a factor A2 and re-transmits that signal to the master node. In

1The first and the second blocks have the same length because the adop-
tion of the amplify-and-forward relaying means that the length of the signals
to be transmitted in these two blocks is the same. For that reason the third
and fourth blocks are also of the same length.
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the third and fourth blocks the roles of Nodes 1 and 2 are reversed.
In Fig. 1, resource allocation is implemented in the time domain.
Although it can also be implemented in the frequency domain, for
simplicity, we will focus on the case of resource allocation in time.

We will consider a block fading channel model with a coher-
ence time that is long enough for us to focus on the case in which
each node can acquire full channel state information (CSI) without
expending a significant fraction of the available power and chan-
nel resources. If we define yi(�) to be the signal block received by
Node i during block �, then the received signals of interest are y1(�)
for � mod 4 = 3, y2(�) for � mod 4 = 1, and y0(�) for all �.
If we define Kmn to be the complex channel gain between Nodes
m ∈ {1, 2} and n ∈ {0, 1, 2}, and zn(�) to be the zero-mean ad-
ditive white circular complex Gaussian noise with variance σ2

n at
Node n during block �, then the received signal blocks of interest
can be written as

y1(�) = K21x2(�) + z1(�) � mod 4 = 3, (1)
y2(�) = K12x1(�) + z2(�) � mod 4 = 1, (2)

y0(�) =

8>>><
>>>:

K10x1(�) + z0(�) � mod 4 = 1,

K20A2y2(�− 1) + z0(�) � mod 4 = 2,

K20x2(�) + z0(�) � mod 4 = 3,

K10A1y1(�− 1) + z0(�) � mod 4 = 0,

(3)

where A1 and A2 represent the amplification factors of Nodes 1 and
2, respectively, when they act as a relay. Let us define Pij to be the
power allocated by Node i to the transmission of the message from
Node j. With that definition, the powers of the (non-zero) trans-
mitted signals in the blocks in Fig. 1 are P11, P21, P22, and P12,
respectively, and the amplification factors A1 and A2 are

A1 =
q

P12
|K21|2P22+σ2

1
, A2 =

q
P21

|K12|2P11+σ2
2
. (4)

We will impose short term average transmission power constraints
on each node, namely, the power components should satisfy the av-
erage power constraints r

2
Pi1 + r̂

2
Pi2 � P̄i, where P̄i is the max-

imum average power for Node i. For notational simplicity, we will
define γmn = |Kmn|2/σ2

n.
For a given allocation for the power components, P =

(P11, P12, P21, P22), and a given value for r, if we define P̃i1 =

rPi1, and P̃i2 = r̂Pi2, the achievable rate region of the system de-
scribed above is the convex hull of all rate pairs (R1, R2) that satisfy
R1 � R̄1(P, r) and R2 � R̄2(P, r), [3], where

R̄1(P, r) = r
2

log
“
1 + γ10P̃11

r
+ γ20γ12P̃11P̃21

r(r+γ20P̃21+γ12P̃11)

”
, (5a)

R̄2(P, r) = r̂
2

log
“
1 + γ20P̃22

r̂
+ γ10γ21P̃12P̃22

r̂(r̂+γ21P̃22+γ10P̃12)

”
. (5b)

The goal of this paper is to find the joint power and resource allo-
cation required to operate at each point on the boundary of the rate
region described in (5), for scenarios in which full channel state in-
formation (CSI) is available. The required allocations can be found
by selecting target values of R̄j and then for each target value, max-
imizing R̄i for the given value of R̄j , subject to the bound on the
transmitted powers; i.e.,

max
P̃ij�0, r∈[0,1]

R̄1(P, r) (6a)

subject to R̄2(P, r) � R2,tar, (6b)
P̃i1 + P̃i2 � 2P̄i i = 1, 2. (6c)

Unfortunately, (6) is not jointly convex in P̃ij and r, and this makes
the development of a reliable efficient allocation algorithm rather
difficult. However, we will show below that (6) can be transformed
into the composition of a convex optimization problem and a quasi-
convex problem. Furthermore, we will develop a closed-form so-
lution for the (inner) convex problem (see Section 3), and we will
show that this enables the solution of (6) using a simple efficient
search over the resource allocation parameter, r; see Section 4.

3. OPTIMAL POWER ALLOCATION

In this section we obtain a closed-form expression for the optimal
power allocation for a given channel resource allocation r. The
derivation involves three main steps: the derivation of an equiva-
lent convex problem; an analysis of KKT optimality conditions for
that problem; and analytic solutions to a pair of scalar optimization
problems. To simplify our development, we will let R2,max(r) de-
note the maximum achievable value for R2 for a given value of r;
i.e., the value of R̄2(P, r) in (5) with P = (0, 2P̄1, 0, 2P̄2).

3.1. Convex equivalent and KKT conditions

For a given positive value of r and non-negative constant values of a,
b, c and d, the function log(1+ ax

r
+ bcxy

r(r+bx+cy)
) is not concave in x

and y. Hence, even for a given value of r, the problem in (6), is still
non-convex. However, it can be shown (analytically, [10]) that the
function h(x, y) =

q
ax
r

+ bcxy
r(r+bx+cy)

is concave in x and y (on
the nonnegative orthant). By taking the exponent of both sides, the
constraint in (6b) can be rewritten in the form of (7b) below. Further-
more, since the logarithm and the square root functions are monoton-
ically increasing functions for positive arguments, for a given value
of r, the problem in (6) is equivalent to

max
P̃ij�0

r
γ10P̃11

r
+ γ20γ12P̃11P̃21

r(r+γ20P̃21+γ12P̃11)
(7a)

s.t.
r

γ20P̃22
r̂

+ γ10γ21P̃12P̃22
r̂(r̂+γ21P̃22+γ10P̃12)

�
q

2
2R2,tar

r̂ − 1, (7b)

P̃i1 + P̃i2 � 2P̄i i = 1, 2. (7c)

The concavity of h(x, y) implies that (7) is a convex optimiza-
tion problem. Furthermore, for all R2,tar ∈ (0, R2,max(r)) the
problem in (7) satisfies Slater’s condition (e.g., [9]), and hence the
KKT optimality conditions are necessary and sufficient. Using the
KKT optimality conditions for (7) and observing that the optimal
power allocation satisfies power constraints in (7c) with equality;
i.e., P̃ ∗

i2 = 2P̄i− P̃ ∗
i1, where the asterisk indicates the optimal value,

it can be shown [10] that at optimality one (or both) of P̃12 and P̃21

is zero. Therefore, at points on the boundary of the achievable rate
region of the scheme in Fig. 1, at least one of the nodes has its relay
mode turned off.

3.2. Closed-form solution to (6) with fixed r

The above analysis has shown that for a fixed value of r the problem
in (6) can be reduced to one of the following two one-dimensional
problems:

β(r) = max
P̃21∈[0,2P̄2]

r
2

log
“
1 + 2γ10P̄1

r
+ 2γ20γ12P̄1P̃21

r(r+γ20P̃21+2γ12P̄1)

”
(8a)

s.t. r̂

2
log

“
1 + γ20(2P̄2−P̃21)

r̂

”
� R2,tar, (8b)
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and

α(r) = max
P̃11∈[0,2P̄1]

r
2

log
“
1 + γ10P̃11

r

”
(9a)

s.t.
r̂
2

log
“
1 + 2γ20P̄2

r̂
+ 2γ10γ21(2P̄1−P̃11)P̄2

r̂(r̂+2γ21P̄2+γ10(2P̄1−P̃11))

”
� R2,tar, (9b)

where (8) arises in the case that P̃ ∗
12 = 0, and (9) arises in the case

that P̃ ∗
21 = 0. Using the properties of the logarithm, the transforma-

tion that led to (7b), and the power constraints, it can be shown [10]
that the feasible set of each of these problems is a simple bounded
interval. In both problems, the objective is monotonically increasing
on that interval, and hence for all feasible R2,tar, the solutions to (8)
and (9) are

P̃ ∗
21 = Q̃β = 2P̄2 − r̂

γ20

„
2

2R2,tar
r̂ − 1

«
, (10)

P̃ ∗
11 = Q̃α = 2P̄1 − (2P̄2γ21+r̂)

`
r̂(2

2R2,tar
r̂ −1)−2P̄2γ20

´
γ10

`
2P̄2γ21−

`
r̂(2

2R2,tar
r̂ −1)−2P̄2γ20

´´ , (11)

respectively. The optimal solution to (6) for a given value of r is then
the power allocation that corresponds to the larger of the values of
β(r) and α(r). However, since (8) corresponds to the case in which
the target rate for Node 2 is met by direct transmission, then it will
generate the larger value whenever R2,tar is less than R2,thresh(r) =
r̂
2

log
`
1 + 2γ20P̄2

r̂

´
. Therefore, if we let P̃ = (P̃11, P̃12, P̃21, P̃22)

denote a (scaled) power allocation, then for each r ∈ (0, 1) and each
R2,tar ∈ (0, R2,max(r)) the optimal solution to (6) for fixed r is

P̃∗ =

(
(2P̄1, 0, Q̃β , 2P̄2 − Q̃β) R2,tar ≤ R2,thresh(r),

(Q̃α, 2P̄1 − Q̃α, 0, 2P̄2) R2,tar > R2,thresh(r).

(12)
This expression clearly shows that at points on the boundary of the
achievable rate region (for the given value of r), at most one node is
acting as a relay; i.e., P̃12 = 0 or P̃21 = 0, or both.

4. OPTIMAL POWER AND RESOURCE ALLOCATION

The expression in (12) provides the optimal power allocation for a
given value of r. However, different points on the boundary of the
achievable rate region are not necessarily achieved with the same r,
and our goal is to jointly optimize the power and resource alloca-
tions. Although the problem in (6) is not jointly convex in r and
the powers, the following result will enable us to develop a simple
algorithm for finding the optimal value of r.

Proposition 1 If the direct channels of both source nodes satisfy
γi0P̄i � 1

2
, then for a given target rate for Node j, Rj,tar, the max-

imum achievable rate for Node i is a quasi-concave function of the
channel resource allocation parameter r.

We now briefly sketch the proof for the case in which i = 1 and j =
2. The first step is to show (see [10]) that the condition γ10P̄1 � 1/2
is sufficient for the function β(r) in (8) to be quasi-concave in r.
That is, the condition is sufficient for the set of values of r for which
β(r) is greater than a given rate, say R1,test, to be a convex set. Let
Sβ = {r|β(r) ≥ R1,test} denote that set. Similarly, the condition
γ20P̄2 � 1/2 is sufficient for the set Sα = {r|α(r) ≥ R1,test} to
be a convex set. The set of values for r for which the solution of (6)
is greater than R1,test is the union of Sβ and Sα. To complete the

Table 1. A simple method for finding r∗

GivenR2,tar ∈ (0, R2,max(0)), for r ∈ (0, 1) defineψ(r) denote the optimal
value of (6) for fixed r if R2,tar ∈ (0, R2,max(r)) and zero otherwise. Set
ψ(0) = 0 and ψ(1) = 0. Set t0 = 0, t4 = 1, and t2 = 1/2. Using
the closed-form expression for the optimal power allocation in (12) compute
ψ(t2). Given a tolerance ε,

1. Set t1 = (t0 + t2)/2 and t3 = (t2 + t4)/2.
2. Using the closed-form expression in (12), compute ψ(t1) and ψ(t3).
3. Find k∗ = arg maxk∈{0,1,...,4} ψ(tk).
4. Replace t0 by tmax{k∗−1,0}, replace t4 by tmin{k∗+1,4}, and save
ψ(t0) and ψ(t4). If k∗ �∈ {0, 4} set t2 = tk∗ and save ψ(t2), else set
t2 = (t0 + t4)/2 and use (12) to calculate ψ(t2).

5. If t4 − t0 ≥ ε return to 1), else set r∗ = tk∗ .

proof, we must show that the union of these sets is, itself, convex.
When only one of the problems can achieve a rate of at least R1,test,
one of Sβ and Sα is empty, and hence the convexity of the union
follows directly from the convexity of the non-empty set. For cases
in which both Sβ and Sα are non-empty, the fact that r is a scalar
means that it is sufficient to prove that the sets intersect. A proof that
they do intersect is provided in [10]. Therefore, when γi0P̄i � 1/2,
for a given target rate for Node 2, the set of values for r for which
the maximum achievable value for the rate of Node 1 is greater than
a given rate is a convex set. Hence, the maximum achievable rate for
Node 1 is quasi-concave in r. A consequence of Proposition 1 is that
we can determine the optimal value of r using a standard efficient
search method for quasi-convex problems; e.g. [9]. An example of
one such algorithm is given in Table 1.

5. SIMULATION RESULTS

We now compare the achievable rate regions of the scheme in Fig. 1
with jointly optimal power and channel resource allocation (obtained
in Section 4) to those obtained with optimal power allocation but a
fixed channel resource allocation. In Fig. 2 we have provided such
a comparison in a (symmetric) scenario in which the gains of the
direct channels of each user are the same. (Results for an asymmetric
scenario appear in [10].) We have plotted the rate region for equal
power and resource allocation, as well.

As expected, in Fig 2 the region bounded by the solid curve,
which represents the achievable rate region when one jointly opti-
mizes over both the transmission powers and r, subsumes the re-
gions bounded by the dashed and dotted curves. In fact, the re-
gion bounded by the solid curve represents the convex hull of all
the achievable rate regions for fixed resource allocation. Also, we
point out that each of the dotted curves and the dashed curve touches
the solid curve at only one point. This is the point at which this
particular value of r is optimal.

The optimal value of the resource allocation parameter r and the
optimized (scaled) power allocations P̃11 and P̃21 are plotted as a
function of the target value R2 = R2,tar in Fig 3. In this figure,
we observe that the value of r decreases as R2,tar increases. This
is what one would expect, because for increasing values of R2,tar

the fraction of the channel resource allocated to Node 2 (i.e., r̂ =
1 − r) should be increased. Fig. 3 also verifies the result of the
analysis of the KKT conditions, which revealed that at optimality
at least one of the nodes will turn off its relaying function. When
R2,tar is small we observe that P̃11 = 2P̄1, and hence P̃12 = 0,
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Fig. 2. Achievable rate region in a case of symmetric direct chan-
nels. P̄1 = P̄2 = 2.0, σ2

0 = σ2
1 = σ2

2 = 1, |K12| = |K21| =
0.7, |K10| = |K20| = 0.4. The solid curve represents the case of
joint optimization over P̃ij and r, the dotted curves represent the
case of fixing r = 0.1k, k = 1, 2, . . . , 9 and optimizing only over
P̃ij . The dashed curve represents the case of optimization over P̃ij

for r = 0.5. The dash-dot curve represents the the case of equal
power and resource allocation.

which means that Node 1 does not allocate any power for relaying
and hence that Node 2 must transmit directly to the master node. At
high target rates for Node 2, P̃21 = 0, which means that Node 2 does
not relay the message of Node 1. For a small range of intermediate
target rates around R2,tar = 0.3, both P̃12 = 0 and P̃21 = 0 and
there is no cooperation between the two nodes. (Both nodes use
direct transmission.) The increase in R2,tar in this region is obtained
by decreasing the resource parameter r (i.e., increasing r̂), and the
change in the slope of the dashed curve that represents r in Fig. 3
can be clearly seen in this region.

6. CONCLUSION

In this paper we addressed the problem of joint power and chan-
nel resource allocation for a two-user AF orthogonal cooperative
scheme in which full channel state information (CSI) is available.
We obtained a closed-form expression for the optimal power allo-
cation problem for a given channel resource allocation, and we ex-
ploited the quasi-convexity of the power and channel resource allo-
cation problem to obtain a simple efficient algorithm for the jointly
optimal allocation. The closed-form expression that we obtained for
the optimal power allocation revealed that at optimality (at least) one
of the nodes has its relaying mode switched off. This suggests that
when CSI is available, the cooperation scheme in Fig. 1 does not
use the channel resource efficiently. Therefore, in [10] we propose
a modified version of the scheme in Fig. 1. That modified scheme
retains the orthogonal half-duplex property yet can provide a signifi-
cantly larger achievable rate region than that of the scheme in Fig. 1.
Furthermore, the jointly optimal power and resource allocation prob-
lem can be efficiently solved.
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Fig. 3. Jointly optimized power and resource allocations in the case
of symmetric direct channels considered in Fig. 2.
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