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ABSTRACT
In a wide range of communication systems, including DS-CDMA
and OFDM systems, the signal-of-interest might be corrupted by an
improper [1] (also called non circularly symmetric [2]) interfering
signal. This paper studies the maximum likelihood (ML) detection
of binary signals in the presence of additive improper complex Gaus-
sian noise. Proposing a new measure for noncircularity of complex
random variables, we will derive the ML decision rule and its perfor-
mance based on this measure. It will be shown that the ML detector
performs pseudo correlation [1] as well as conventional correlation
of the observation to the signals-of-interest. As an alternative so-
lution, we will propose a filter for converting improper signals to
proper ones, called circularization filter, and will utilize it together
with a conventional matched-filter (MF) to construct an ML detector.

Index Terms— Circularization, Gaussian noise, improper com-
plex, matched filters, maximum likelihood detection.

1. INTRODUCTION

Since the first studies of improper complex signals (also called non
circularly symmetric signals) by [1, 2] there has been a growing in-
terest on characterization of such signals in various applications, es-
pecially communication systems. The issue of improper interference
was firstly studied by [3] in the context of multi-access interference
(MAI) in synchronous DS-CDMA systems using BPSK modulation.
However, improper interferences are not restricted to this case and
can arise in many other applications (e.g. [4]-[8]).

This paper considers the simple scalar case of binary transmis-
sion over a typical additive Gaussian noise channel, where the noise
is independent of the transmitted signal. Let’s assume that r is a
scalar1 noisy observation of the unknown scalar signal-of-interest s
which might take either of the deterministic constant values s0 or s1

with equal probabilities according to the following hypotheses:j
H0 : r = s0 + n
H1 : r = s1 + n

(1)

where r, s0, s1, n ∈ C and the noise n has the following variance
and pseudo-variance [1]:

σ2
n � E{|r − r̄|2} , γ2

n � E{(r − r̄)2}. (2)

1In this paper we use the following notation: lowercase letters for scalar
variables (e.g. z), boldface lowercase letters for vectors (e.g. z), and bold-
face uppercase letters for matrices (e.g. Z). R and C represent the real and
complex domains. �{z} and �{z} represent the real and imaginary parts of
a complex variable z. σ2

z , γ2
z , and σxy represent the variance of z, pseudo

variance of z, and the covariance between x and y, respectively.

The pseudo variance γ2
n is in fact the covariance between n and n∗.

When n is uncorrelated from n∗ (i.e. γ2
n = 0), it will be called

a proper or circularly symmetric noise. This paper focuses on the
problem of detecting the transmitted signal, which is deterministic
but unknown at the receiver, from the noisy observation r when the
noise n is improper. Although [9] has studied the mean square es-
timation and detection of improper signals-of-interest observed in
proper noise, the problem of ML detection in the presence of im-
proper noise has not been studied in general yet; except few works
which have studied some special systems with BPSK signaling (e.g.
[4, 7, 8]). However, the results of this paper, specially the circular-
ization filter introduced in Section 4, are applicable to any M-ary
signaling with fixed constellation in the complex plain (e.g. antipo-
dal, orthogonal, M-QAM, or M-PSK signaling).

In Section 3, after derivation of ML decision rule, we will prove
that the ML detector makes use of the correlation existing between
real and imaginary parts of the interfering noise to get the optimal
detection performance. Based on the results of Section 3, we will
propose a circularization filter for converting the improper additive
noise into a proper one in Section 4. This filter can be used as a pre-
processing step for conventional tools (MFs in this paper) to enable
them to deal with improper noises.

2. IMPROPER GAUSSIAN RANDOM VARIABLES

Let z be a scalar complex Gaussian random variable (RV) with Carte-
sian representation of the form z = x + jy, where x and y are
two real valued RVs. It has been shown in [10] that z can be com-
pletely characterized by either wz � [x, y]T or vz � 1√

2
[z, z∗]T ,

as these two random vectors relate to each other through a unitary
linear transformation:

wz = Tvz, where T =
1√
2

»
1 1
−j j

–
(3)

Moreover, complete second-order characterization of z requires knowl-
edge of the following statistics [10]:

σ2
z = σ2

x + σ2
y , γ2

z = (σ2
x − σ2

y) + j(2 σxy), (4)

or knowledge of the following covariance matrices:

CvzvH
z

� E{(vz − vz̄)(vz − vz̄)
H} =

1

2

»
σ2

z γ2
z

(γ2
z )∗ σ2

z

–
(5)

CwzwT
z

� E{(wz − wz̄)(wz − wz̄)
T } =

»
σ2

x σxy

σxy σ2
y

–
. (6)
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Note that by knowing one of the covariance matrices in (5) or (6),
the other one can be determined since CwzwT

z
= TCvzvH

z
TH .

Finally, it should be noted that the probability density function (pdf)
of a complex Gaussian RV z is defined in [10] as follows:

pz(z) =
˛̨̨
2πCwzwT

z

˛̨̨− 1
2

exp
n
−1

2

‚‚wz − wz̄

‚‚
C−1

wzwT
z

o
=

˛̨̨
2πCvzvH

z

˛̨̨− 1
2

exp
n
−1

2

‚‚vz − vz̄

‚‚
C−1

vzvH
z

o
, (7)

where
‚‚x‚‚

C
� xHCx.

The latter equation in (4) reveals that z is proper (γ2
z = 0) if

the power of z is equally distributed between its real and imaginary
parts (σ2

x = σ2
y) and there exists no correlation between these two

parts (σxy = 0). In this case, we will get γ2
z = 0 and σ2

z = 2σ2
x, and

the covariance matrices of (5) and (6) will be reduced to: CwzwT
z

=

CvzvH
z

= (σ2
z/2)I, where I is the identity matrix. In the follow-

ing definition, we will propose a new complex valued measure for
noncircularity (or improperness) of RVs, which will be utilized in
analyzing the ML detector in next sections.

Definition 1 Given a complex RV z, the noncircularity coefficient of
z, denoted by αz , is defined as the ratio of its pseudo-variance to its
variance:

αz � γ2
z

σ2
z

=

„
σ2

x − σ2
y

σ2
x + σ2

y

«
+ j

„
2σxy

σ2
x + σ2

y

«
. (8)

We call αz the noncircularity coefficient of z, in that its real and
imaginary parts are normalized measures of the power difference
between x and y and the correlation between x and y, respectively.
Therefore, αz is independent from the changes in the power of z
and only conveys information about its properness. In fact, decom-
position of the pseudo-variance as γ2

z = σ2
z αz provides us with the

ability to distinguish between changes in γ2
z caused by changing the

power of z as opposed to changes caused by changing the properness
of z.

Theorem 1 The magnitude of the pseudo-variance of a complex
RV is upper bounded by the value of its conventional variance.

(Proof: Appendix-A) Theorem-1 implies that the newly defined co-
efficient αz lies within the unit circle (i.e. 0 ≤ |αz| ≤ 1), and the
extreme case for improperness of z occurs when |γ2

z | = σ2
z .

3. MAXIMUM LIKELIHOOD BINARY DETECTION IN
THE PRESENCE OF IMPROPER NOISE

In this paper we consider the binary hypothesis model of (1) and as-
sume that the detector has complete knowledge of the noise statistics
(i.e. n̄ as well as either CvnvH

n
or CwnwT

n
); hence, the noise pdf

pN(n) is available. Without loss of generality, we will assume that
n has zero mean (For nonzero mean noises, we can use r′ = r− n̄).
Under the maximum likelihood paradigm, the following decision
rule could be defined:

L(r) =
pR|S1 (r|s1)

pR|S0 (r|s0)

ŝ=s1
≷

ŝ=s0

1, (9)

By conditioning on sj , the detector assumes that sj is transmitted;
therefore, pR|Sj

(r|sj) = pN(r − sj). Since sj is a deterministic
constant value, we can substitute

pR|Sj
(r|sj) =

˛̨̨
2πCvnvH

n

˛̨̨− 1
2

exp
n
−1

2

‚‚vr − vsj

‚‚
C−1

vnvH
n

o

in (9). By taking the natural logarithm of both sides, the following
decision rule will be resulted:

vH
s1 C−1

vnvH
n
vr − 1

2
vH

s1 C−1
vnvH

n
vs1

ŝ=s1
≷

ŝ=s0

vH
s0 C−1

vnvH
n
vr − 1

2
vH

s0 C−1
vnvH

n
vs0 , (10)

where vsj = 1√
2
[sj , s

∗
j ]

T , vn = 1√
2
[n, n∗]T , vr = 1√

2
[r, r∗]T ,

and

C−1
vnvH

n
=

2

σ2
n(1 − |αn|2)

»
1 −αn

−α∗
n 1

–
.

By substituting these values in (10), we will get

�
j`

rs∗1 − 1

2
|s1|2

´− `rs1 − 1

2
s2
1

´
α∗

n

ff
ŝ=s1
≷

ŝ=s0

�
j`

rs∗0 − 1

2
|s0|2

´− `rs0 − 1

2
s2
0

´
α∗

n

ff
. (11)

Fig. 1(a) shows the the block diagram of this detector. The term
rs∗j correlates the observation r with sj , while the the term rsj

pseudo correlates [1] r with sj . After the outputs of the correlator
and pseudo correlator are adjusted by 1

2
|sj |2 and 1

2
s2

j , respectively,
they will be superposed according to the noncircularity coefficient
αn, and the ML decision will be based on the real part of this re-
sult. For proper noises, the outputs of pseudo correlators for both s1

and s0 are ignored (multiplied by αn = 0), and the decision only
depends on the outputs of correlators according to

�
j`

rs∗1 − 1

2
|s1|2

´ff ŝ=s1
≷

ŝ=s0

�
j`

rs∗0 − 1

2
|s0|2

´ff
(12)

which is the decision rule of well-known conventional ML detectors
for proper noises.

By using (3), decision rule of (10) can also be rewritten as:

wT
s1 C−1

wnwT
n
wr − 1

2
wT

s1 C−1
wnwT

n
ws1

ŝ=s1
≷

ŝ=s0

wT
s0 C−1

wnwT
n
wr − 1

2
wT

s0 C−1
wnwT

n
ws0 , (13)

where wsj = [�{sj},�{sj}]T , wn = [�{n},�{n}]T , wr =

[�{r},�{r}]T , and

C−1
wnwT

n
=

2

σ2
n(1 − |αn|2)

»
1 −�{αn} −�{αn}
−�{αn} 1 + �{αn}

–
.

The ML decision rule of (13) can be interpreted as follows. �{r}
and �{r} can be considered as two observations of signals �{sj}
and �{sj} which are corrupted with noises �{n} and �{n}, re-
spectively. When n is improper (αn �= 0), the off-diagonal elements
of CwnwT

n
are not zero and �{n} and �{n} will become correlated

noises.

Therefore, the term wT
s1 C−1

wnwT
n
wr(= vH

sj
C−1

vnvH
n
vr) can be

viewed as a whitened matched-filter for optimal joint detection of
�{sj} and �{sj} from the noisy observation vector of wr , when
the elements of the jointly Gaussian noise vector wn are correlated
to each other. This relationship between ML detector for improper
scalar noise n and the well-known whitened MF for correlated wn

motivates us to study another alternative implementation of optimal
ML detector in the next section.
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(a) Combination of Correlators and Pseudo Correlators

(b) Circularization Filter followed by Matched-Filter

Fig. 1. Equivalent implementations of binary ML detector.

Finally, it should be mentioned that for proper noises, decision
rules of (10) and (13) reduce to

vH
s1 vr − 1

2
vH

s1 vs1

ŝ=s1
≷

ŝ=s0

vH
s0 vr − 1

2
vH

s0 vs0

and

wT
s1 wr − 1

2
wT

s1 ws1

ŝ=s1
≷

ŝ=s0

wT
s0 wr − 1

2
wT

s0 ws0 ,

both of which make use of conventional MFs (vH
sj

vr or wT
sj

wr).

4. CIRCULARIZATION FILTER FOLLOWED BY
MATCHED-FILTER

In Section 3, it was shown that an improper scalar noise n can be
represented by the noise vector wn with non i.i.d. elements. Con-
sequently, by converting the elements of wn into i.i.d elements, the
corresponding noise will become proper. Thus, we can exploit the
concept of whitening filters in order to convert an improper noise
into a proper one as follows.

Definition 2 Given an improper complex RV z, the circularization
(or proprization) filter is defined as the filter which converts z into a
proper RV ez, using the following input/output relationship:

w
ez = Λ− 1

2 UT wz, (14)

where U and Λ are the matrices including eigenvectors and eigen-
values of CwzwT

z
, respectively (i.e. CwzwT

z
= UΛUT ).

According to Appendix-B, this filter firstly rotates the coordinate
system and uses the eigenvectors of CwzwT

z
as the new coordinate

system to remove the correlation between �{z} and �{z}. After-
wards, the new coordinates should be scaled separately by the in-
verse of the square root of corresponding eigenvalues to get a properez with equal power on �{ez} and �{ez}.

Applying a circularization filter to the observation r, we get

w
er = Λ− 1

2 UT wr = Λ− 1
2 UT ws + Λ− 1

2 UT wn = w
es + w

en,
(15)

where es and en denote the transformed signal and the circularized
noise (Cw

enwT
en

= I), and U and Λ are derived from eigen decom-

position of CwnwT
n

. As it is shown in Fig. 1(b), the ML detection

of es can now be accomplished using conventional matching of er toes∗, i.e.,

�
jer es∗1 − 1

2
|es1|2

ff
ŝ=s1
≷

ŝ=s0

�
jer es∗0 − 1

2
|es0|2

ff
(16)

or equivalently

wT
es1 w

er − 1

2
wT

es1 w
es1

ŝ=s1
≷

ŝ=s0

wT
es0 w

er − 1

2
wT

es0 w
es0 . (17)

Note that both decision rules of (16) and (17) are equivalent to the
ML decision rule of (10), in that

�˘er es∗j¯ = wT
esj

w
er = wT

sj
C−1

wnwT
n
wr = vH

sj
C−1

vnvH
n
vr

Accordingly, we will call the term vH
sj

C−1
vnvH

n
vr a circularized MF

to distinguish it from conventional MF (vH
sj

vr).
In fact, circularization is a reversible preprocessing step and pre-

serves all the data included in vr . Thus, applying the ML criterion
to the preprocessed data will yield the same result as applying the
ML criterion to the original data (see [11] Page 289).

Finally, it should be noted that for proper noises (αn = 0), we
have Cw

enwT
en

= (σ2
n/2)I. Consequently, the circularization filter

simply scales r with factor
p

2/σ2
n. Therefore, for proper noises, it

can be omitted and the optimal detector will be the conventional MF.

5. PERFORMANCE

Let r′ = x′ + jy′ be the representation of the observation r =
x + jy in a new coordinate system which has the following axes:
the line passing through the points s0 and s1, and the perpendicular
bisector of the line segment s0s1. Assuming that the angle between
the former line and x-axis is θ, we have [x′, y′]T = Rw(−θ) [x −
�{s̄}, y − �{s̄}]T , where Rw(−θ) is defined in Appendix-B and
s̄ = 1

2
(s0 + s1). It can be shown that when x′-axes is parallel to one

of the eigenvectors of CwnwT
n

, the ML detectors of Sections 3,4 will
become equivalent to conventional MF. For all other cases, however,
the ML detector is not a conventional MF and outperforms it. It can
be proved that the probability of detection error is

Pe = Q

 s
2|s1 − s0|2

σ2
n

× 1 − |αn| cos(ϕ − 2θ)

1 − |αn|2
!

= Q

 s
|s1 − s0|2

4σ2
n′

I
(1 − ρ′2)

!
, (18)

where n′
I , n′

Q, and ρ′ = σn′
I

n′
Q

.q
σ2

n′
I
σ2

n′
Q

are, respectively, the

inphase part, quadrature part, and correlation factor of the noise in
x′-y′ coordinates, and ϕ is the phase of the noncircularity coefficient
of noise in x-y coordinates. Equation (18) together with Appendix-
B reveals that for a fixed power constraint, the optimal signaling is
antipodal signaling (s1 = −s0) along the eigenvector corresponding
to the smallest eigenvalue of CwnwT

n
. As mentioned before, the ML

detector for this signaling will become a conventional MF.
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In order to illustrate how ML detectors of Section 3 outperform
conventional MFs, we will consider an antipodal signaling such that
θ �= (ϕ − π)/2 and θ �= ϕ/2 (in these two cases the ML detector
is MF). For simplicity, let’s assume that θ = 0 and the power of
noise is equally distributed in x′ and y′ directions. Fig. 2 presents
the performance of the ML detector in this case for different values
of ρ′. It can be seen that for improper noises with higher ρ′, this
performance improves since the optimal detector is provided with
more side information in y′.

Fig. 2 also illustrates the improvement which can be achieved
by using ML detectors instead of conventional MFs. In x′-y′ co-
ordinate system, the imaginary part of s′ is zero for both s1 and
s0. Therefore, a conventional MF, which is based on a proper noise
model, assumes that there is no relevant data in the imaginary part
of the observation (y′); hence, ignores it. The performance of such

detector is well-known as Q(
q

|s1 − s0|2/4σ2
n′

I
), which does not

change for different values of ρ′ and is always equivalent to the case
of ρ′ = 0 shown in Figure 2. However, using the correct improper
model for the noise, the ML detector takes advantage of the corre-
lation existing between the real and imaginary parts of observation
r′ to give the optimal performance. Thus, its performance improves
for improper noises when ρ′ increases.

6. CONCLUSION AND REMARKS

In this paper, the ML detection of binary signals in additive improper
Gaussian noise was studied. Using the noncircularity coefficient of
the noise, the ML detector combines correlation and pseudo corre-
lation of r with s during the detection process. As a more general
solution, we proposed that instead of designing a new ML detector
for improper noises, we can equip conventional detectors, which are
designed for proper noises, with a circularization filter. Finally, it
was shown that the resulting ML detector in both approaches be-
come a conventional MF when the noise is proper or the signaling is
along eigenvectors of CwnwT

n
.

Due to space limitations and for simplicity, this paper was re-
stricted to scalar RVs and binary hypotheses; however, the more
general results for random vectors and M-ary hypotheses as well as
derivation of error probability will be presented in future works.

A. PROOF OF THEOREM-1

According to (4) we have σ4
z − |γ4

z | = 4[σ2
xσ2

y − σ2
xy]. From

Schwartz inequality (σ2
xσ2

y − σ2
xy ≥ 0), it follows that 0 ≤ |γ4

z | ≤
σ4

z ; hence, 0 ≤ |γ2
z | ≤ σ2

z .

B. EIGEN DECOMPOSITION OF CvZvH
Z

AND CwZwT
Z

Let CvzvH
z

= QΛ1Q
H and CwzwT

z
= UΛ2U

T be the eigen de-
composition of covariance matrices defined in (6), (5), where Λ1 and
Λ2 are diagonal matrices including the eigen values of CvzvH

z
and

CwzwT
z

in non-increasing order, and Q and U are unitary matrices
including their corresponding eigenvectors. Then

1. Λ1 = Λ2 = Λ =
σ2

z
2

»
1 + |αz| 0

0 1 − |αz|
–

2. U =

»
cos ϕ

2
− sin ϕ

2
sin ϕ

2
cos ϕ

2

–
= Rẁ

ϕ
2

´
3. Q = THU =

"
ej ϕ

2 0

0 e−j ϕ
2

#
TH = Rv̀

ϕ
2

´
TH
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Fig. 2. Error Probability for different values of ρ′ when σ2
n′

I
= σ2

n′
Q

and s1 = −s0 ∈ R .

where ϕ denotes the phase of noncircularity coefficient αz , and Rẁ
ϕ
2

´
and Rv̀

ϕ
2

´
are unitary transformations on wz and vz , respectively,

both of which result in the rotation of z by phase ϕ
2

.
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