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ABSTRACT

In this paper, we derive an optimal detector for pilot-assisted trans-
mission in Rayleigh frequency-flat fast fading channels. The classi-
cal detector based on obtaining channel estimates and treating them
as perfect in a minimum distance detector is called mismatched de-
tector. The optimal detector jointly processes the received pilot and
data symbols to recover the data with a minimum error. We consider
spline approximation of the channel gain time variations and com-
pare the detection performance of mismatched detectors using maxi-
mum likelihood channel estimates with the optimal one. Further, we
investigate the detection performance of a receiver that iteratively
improves the channel and data information in a system transmitting
turbo-encoded data, where a channel estimator provides either maxi-
mum likelihood estimates or statistics for the optimal detector. Sim-
ulation results show that the optimal detector significantly outper-
forms the mismatched detectors.

Index Terms— Optimal detection, fading channels, Rayleigh
channel, splines, turbo code.

1. INTRODUCTION

In communication systems transmitting data through unknown chan-
nels, traditional detection techniques are based on channel estima-
tion (e.g., by using pilot signals), and then treating the estimates as
perfect in a minimum distance detector; such a detector is called
mismatched [1]. A better detection performance can be obtained in
an optimal detector that does not estimate the channel explicitly but
jointly processes the received pilot and data symbols to recover the
data [1, 2]. The optimal detector in [1] was obtained for channels
with uncorrelated fading. In this paper, we consider a more general
scenario with correlated fading and derive the optimal detector for
frequency-flat fast fading channels. Our derivation differs from that
in [2]; in particular, we obtain the optimal detector for the case when
the channel gain time variations are approximated by using basis
functions. Fourier, polynomial, and spheroidal basis functions can
be used for this purpose [3, 4, 5, 6]. Recently, B-splines have also
been proposed for channel estimation; they provide high accuracy
of approximation and require low complexity [7, 8]. We consider
approximation of the channel time variations by B-splines, and, for
this case, investigate the detection performance of the optimal detec-
tor and compare it with that of mismatched detectors using different
channel estimation techniques.

In time-varying fading channels, the channel estimation is dif-
ficult, especially in systems with powerful channel codes, such as
turbo codes, generally operating at low signal-to-noise ratio (SNR)
where pilot-based channel estimates are often of low accuracy. Itera-
tive channel estimation and decoding has been proposed to improve

Fig. 1. Structure of the transmitted data block.

the estimates [9, 10]. We investigate an iterative receiver that ex-
changes channel and data estimates in a system transmitting turbo-
encoded data. Three channel estimation schemes are considered: the
maximum likelihood (ML) estimator, regularized ML estimator, and
an estimator providing statistics for the optimal detector.

2. OPTIMAL ANDMISMATCHED DETECTION

2.1. Transmission model

We consider single-user transmission in fast frequency-flat Rayleigh
fading channel and assume that a data block of N symbols is trans-
mitted,Np of which are pilot symbols and the other Nd = N −Np

are data symbols as shown in Fig.1. The received signal correspond-
ing to the pilot and data parts of the data block are modeled, respec-
tively, as

zp(tk) = sp(tk)a(tk) + n(tk), k = 1, . . . , Np, (1)
zd(τk) = sd(τk)a(τk) + n(τk), k = 1, . . . , Nd, (2)

where sp(tk) is a pilot symbol transmitted at time tk, sd(τk) = dk

is a data symbol transmitted at time τk, n(t) is the white noise, and
a(t) is the time-varying channel gain modeled as a series

a(t) =
M∑

m=1

amϕm(t), t = 0, . . . , N − 1, (3)

where {ϕm(t)}M
m=1 are basis functions described below in section 2.3.

The received data and pilot signals can be represented in the
matrix form: zp = Φpa + np and zd = Φda + nd with Φp =
DpBp, Φd = DdBd, where Dp and Dd are diagonal matrices
defined as Dp = diag{sp(t1), . . . , sp(tNp)} and Dd = diag{d},
d = {d1, . . . , dNd}. The matrices Bp and Bd contain samples
of the basis functions at the pilot and data symbol instants, respec-
tively: [Bp]k,m = ϕm(tk), [Bd]k,m = ϕm(τk). Below, we will
need the following notations: βd = DH

d zd, βp = DH
p zp, Fd =

DH
d Dd, and Fp = DH

p Dp. TheNp × 1 complex-valued noise vec-
tor np has a zero mean Gaussian probability density function (PDF)
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NC(0, σ2
nINp ) with variance σ2

n, where INp is a Np ×Np identity
matrix. The PDF of the received signal vector zp for a given vector
a is p(zp|a) = NC(Φpa, σ2

nINp ). The vector a=[a1, . . . , aM ]T is
anM × 1 vector of complex-valued channel gains (unknown chan-
nel parameters) with the Gaussian PDF f(a) = NC(0,Ra), where
Ra = E{aaH} is an M ×M covariance matrix, where E{·} de-
notes the expectation and (·)H Hermitian transpose. The function
f(a) defines a Rayleigh fading channel. The Nd × 1 noise vector
nd has the Gaussian PDFNC(0, σ2

nINd). The PDF of the vector zd

for given vectors d and a is also Gaussian:

p(zd|d, a) = NC(Φda, σ2
nINd). (4)

2.2. Optimal detection

For the described transmission model, the optimal detector is derived
by maximizing the PDF p(zd|d, zp) of the signal zd received at the
data stage, conditioned on the transmitted symbols d and the signal
zp received at the pilot stage, over the QAM alphabet A:

d̂opt = arg max
d∈A

{p(zd|d, zp)}
= arg max

d∈A
{ln [p(zd|d, zp)]} . (5)

The PDF p(zd|d, zp) is obtained from the PDF p(zd|d, a) in (4) by
integrating out the channel parameters a treated as nuisance param-
eters:

p(zd|d, zp) =

∫
p(zd|d,a)f(a|zp)da (6)

where the posterior PDF f(a|zp) of channel parameters is condi-
tioned on the received pilot signal zp. Since zp = Φpa + np is
the Bayesian general linear model, the PDF f(a|zp) is also Gaus-
sian (see [11], pp.326), f(a|zp) = NC(ma,Sa), with mean ma

and covariance Sa given by ma = (Γp + R−1
a )−1Lp, and Sa =

(Γp + R−1
a )−1, where

Lp = σ−2
n ΦH

p zp = σ−2
n BH

p βp, (7)

Γp = σ−2
n ΦH

p Φp = σ−2
n BH

p FpBp. (8)

By substituting (4) in (6), we obtain

p(zd|d, zp) = c

∫
e2�(aHLd)−aHΓdaf(a|zp)d�(a)d�(a) (9)

where �(·) and �(·) denote real and imaginary part, respectively,
c > 0 is a constant, and

Ld = σ−2
n ΦH

d zd = σ−2
n BH

d βd, (10)
Γd = σ−2

n ΦH
d Φd = σ−2

n BH
d FdBd. (11)

Then, we can obtain

p(zd|d, zp) =
c

|SaΓd + IM |
× exp

{
(Ld + Lp)

H(Γd + S−1
a )−1(Ld + Lp)

}
(12)

where |A| denotes the determinant of a matrixA. Finally, the opti-
mal detector (5) is given by

d̂opt = arg min
d∈A

{λ(d)} . (13)

where the metric λ(d) to be minimized is given by

λ(d) = −(Ld + Lp)H(Γd + Γp + R−1
a )−1(Ld + Lp)

+ ln |Γd + Γp + R−1
a | (14)

= SaLdm
H
a Γd(SaΓd + IM )−1ma − LH

d (SaΓd + IM )−1

+ ln |SaΓd + IM | − 2�[LH
d (SaΓd + IM )−1ma]. (15)

The first presentation (14) of the optimal metric λ(d) shows how
this metric is expressed in terms of the channel statistic Lp, which is
a vector of outputs of filters matched to the pilot signals, and the cor-
relation matrix Γp of the pilot signals. The second presentation (15)
shows how the optimal metric is expressed in terms of the meanma

and covariance Sa of the posterior PDF f(a|zp).
If the perfect channel information (PCI) is available, we have

ma = a and Sa = 0M , where 0M is aM ×M zero matrix. In this
case, the metric (15) takes the form λ(d) = −2�(LH

d a) + aHΓda.
Then, the optimal detector is equivalent to the classical minimum
distance detector

d̂PCI = arg min
d∈A

{||zd −Φda||2
}

. (16)

The optimal detector becomes very complicated for high Nd.
We want to consider the simplest case of Nd = 1, i.e., the symbol-
by-symbol detection of data symbols in a data block. In this case, ex-
pressions above are simplified: Dd = d, Fd = |d|2 and βd = d∗zd

are now scalars;Bd is a (1×M) vector whose elements are values of
the basis functions at the data symbol instant; Ld = σ−2d∗zdB

H
d ;

and Γd = σ−2|d|2BH
d Bd. The optimal detector (13) minimizes the

metric λ(d) which is now given by

λ(d) = ln
∣∣∣|d|2BH

d Bd + BH
p FpBp + σ2

nR−1
a

∣∣∣
−σ−2

n

(
BH

d βd + BH
p βp

)H

×
(
|d|2BH

d Bd + BH
p FpBp + σ2

nR−1
a

)−1

×
(
BH

d βd + BH
p βp

)
. (17)

2.3. B-spline approximation of fast fading channels

Different basis functions can be used for representing the fading pro-
cess a(t) [3, 4, 5, 6]. Below we will consider basis functions built
from the cubic B-spline [12]

ϕ(t) =

⎧⎪⎨
⎪⎩

2
3
− t2

T2 + |t|3
2T3 , if |t| < T,

1
6
(2− |t|

T
)
3
, if T ≤ |t| < 2T,

0, otherwise
(18)

where T is a sampling interval. For approximation of a(t) on an
interval t ∈ [0, N − 1], we set T = (N − 1)/(M − 3); then the
basis functions ϕm(t) are given by ϕm(t) = ϕ(t − mT + 2T ),
m = 1, . . . , M . B-splines provide good approximation accuracy,
in particular, for Jake’s fading channels [7, 8]. The accuracy and
complexity of spline approximation depend on the spline degree. In
many situations, cubic splines are the trade-off between complexity
and accuracy.

The ML estimate of the spline coefficients am,m = 1, . . . , M ,
is given by

âML = Γ−1
p Lp = (BH

p FpBp)
−1BH

p DH
p zp. (19)
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In noisy scenarios, the regularized ML (ε-ML) channel estimates

âε = (Γp + εIM )−1Lp

= (BH
p FpBp + εσ2

nIM )−1BH
p DH

p zp, (20)

are preferable over the ML estimate (19). It can be shown that the
ε-ML channel estimate provides the minimum MSE if the regular-
ization parameter ε = σ−2

a ; we use this ε in our simulation.
For using the optimal detector based on modeling the fast fading

by splines, we need an explicit expression for the fading covariance
Ra. For obtaining Ra, we can use the following transform:

Ra = (BHB)−1BHΥB(BHB)−1 (21)

where B is a N ×M matrix with elements [B]t,m = ϕm(t), t =
0, . . . , N − 1, and Υ is a N ×N matrix with elements [Υ]t1,t2 =
ρ(t1 − t2), t1, t2 = 1, . . . , N , where ρ(τ ) = σ2

aJ0(2πfDτ ) is the
autocorrelation function of Jake’s fading process [13], J0(·) is the
zero-order Bessel function of the first kind, and fD is the Doppler
frequency.

2.4. Mismatched detection

The optimal detector requires the knowledge of the fading statistics
that are not always available. Therefore, it is of interest to compare
its performance with that of the ML-mismatched detector

d̂ML = arg max
d∈A

{
(zd −ΦdâML)

H(zd −ΦdâML)
}

(22)

where the ML channel estimates are given by (19). We will also
consider a ε-ML-mismatched detector

d̂ε = arg max
d∈A

{
(zd −Φdâε)

H(zd −Φdâε)
}

(23)

with channel estimates using regularization based on the diagonal
loading (20). Such regularization does not require the fading statis-
tics to be available. Note that for ε = 0, we have âML = âε. Thus,
we are going to consider the following detectors: 1) optimal detector
defined by (13) and (17); 2) ML-mismatched detector given by (22);
and 3) ε-ML-mismatched detector given by (23).

2.5. Iterative receivers

In the transmitter, information bits are firstly encoded by a turbo
encoder. The output bits of the turbo encoder are channel-interleaved
and grouped into QAM symbols. Then, pilot symbols are inserted
periodically every (P − 1) data symbols as shown in Fig.1.

The receiver (Fig.2) performs several iterations, in which chan-
nel estimation and decoding are refined once per iteration. Functions
of the channel estimator and detector are varying depending on the
detector used and whether it is the first or a subsequent iteration:

1) ML-ML receiver: At the first iteration, the channel estimator
provides the ML channel estimate âML according to (19). In subse-
quent iterations, it provides ML estimates with re-defined matrices
Dp and Fp to include all (pilot and data) symbols; the matrix Bp

is replaced by the matrix B. In all iterations, for every bit ck of
a received symbol, k = 1, . . . , K, the detector calculates the soft
metric

λck = min
d∈A+

k

λ(d)− min
d∈A−

k

λ(d) (24)

where A±k = {d ∈ A|ck = ±1}, A = {d1, d2, . . . , d2K }, and the
metric λ(d) is calculated as

λ(d) = σ−2
n |zd − âd|, (25)

Fig. 2. Iterative receiver.

where â is a channel estimate given by â = BdâML.
2) ε-ML-ε-ML receiver: This receiver is similar to the ML-ML

detector with replacement âML by âε according to (20).
3) Opt-ML receiver: At the first iteration, the channel estimator

provides the vector Lp = σ−2
n BH

p DH
p zp required for the optimal

detector. In subsequent iterations, it provides ML estimates with re-
defined matrices Dp and Fp to include all symbols; the matrix Bp

is replaced by the matrixB. At the first iteration, for every bit ck of
a received symbol, the detector calculates the soft metric (24) where
now λ(d) is given by (17). At other iterations, the detector calculates
the soft metric (24) with λ(d) in (25) and â given by â = BdâML.

4) Opt-ε-ML receiver: This receiver is similar to the Opt-ML
detector with replacement âML by âε.

The soft metrics are transformed by the tanh(·) function and
form a sequence that is de-interleaved and then passed to a soft-
input soft-output (SISO) turbo-decoder. The turbo decoder in Fig.2
outputs both a sequence of log-likelihood ratios (LLRs) for every
bit and decoded bits; the LLRs are then transformed to a binary se-
quence. After interleaving, mapping to the QAM constellation, and
adding the pilot symbols, the whole recovered sequence of QAM
symbols is used for channel estimation in the next iteration. Adding
the recovered data allows more accurate channel estimation at the
next iteration.

3. NUMERICAL RESULTS

We consider a fast fading channel with a Doppler spreading factor
fDTs = 0.01. Fig.3 shows simulation results for a scenario with
8-QAM modulation. It is seen that for BER= 10−2, the optimal
detector outperforms the ML mismatched detector by 5.5 dB and is
inferior to the receiver with perfect channel knowledge by 2.1 dB.
The ε-ML mismatched detector is inferior to the optimal detector by
1.5 dB. Fig.4 and Fig.5 show, respectively, the BER and MSE per-
formance of the iterative receivers in the same scenario. It is seen
that the Opt-ML and Opt-ε-ML receivers have similar detection per-
formance, which is only about 1 dB (at BER=10−3) worse than that
of a receiver with PCI and significantly better than that of the ML-
ML receiver. The mismatched detector with regularized ML channel
estimates does not need the knowledge of the fading statistical char-
acteristics. The payment for this a priori uncertainty is a worse de-
tection performance. However, the performance degradation is not
significant; the use of the regularized ML channel estimation allows
a detection performance which is only 0.5 dB inferior to the iterative
receivers with the optimal detector at the first iteration.
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Fig. 3. BER performance of the optimal and mismatched detectors
in fast frequency-flat Rayleigh fading channel with 8-QAM modu-
lation; fDTs = 0.01, N = 507, M = 23, Np = 24, t0 = 1.
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Fig. 4. BER performance of the iterative receivers with a SISO turbo
decoder after 4th iteration in a fast frequency-flat Rayleigh fading
channel with 8-QAM modulation; 1/3 - code rate, fDTs = 0.01,
N = 507,M = 23, Np = 24, t0 = 1.
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Fig. 5. MSE performance of the iterative receivers with a SISO turbo
decoder after 4th iteration in a fast frequency-flat Rayleigh fading
channel with 8-QAM modulation; 1/3 - code rate, fDTs = 0.01,
N = 507,M = 23, Np = 24, t0 = 1.

4. CONCLUSIONS

We have derived an optimal detector for pilot-assisted transmission
in Rayleigh fast fading channels with unknown parameters. We have
considered spline approximation of the channel gain time variations.
Simulation results for uncoded data transmission have shown that,
in such channels, the optimal detector can significantly improve the
detection performance compared to that of the mismatched detectors
exploiting ML channel estimates. We have also investigated the de-
tection performance of iterative receivers that exchange information
between a channel estimator and decoder. It is shown by simulation
that the iterative receiver with the optimal detector at the first itera-
tion outperforms the receiver using ML or regularized ML channel
estimates.
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