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ABSTRACT

We consider BCJR-like soft-input soft-output (SISO) iterative de-
tection algorithms for 1D and 2D binary-input ISI channels with
AWGN. The complexity of BCJR algorithms grows exponentially
with the size of the ISI mask and is an important concern with their
implementation. We consider new techniques to reduce the com-
plexity of BCJR algorithms by decreasing the effective number of
states in the trellis. The proposed state reduction technique does
particularly well for mixed phase sequence ISI masks, which have
higher weights for the center taps and lower weights for the periph-
eral taps. Other complexity reduction techniques proposed in the
literature perform poorly for such masks. Moreover, the complexity
of the proposed state reduction technique is comparable to other re-
duced complexity techniques reported in the literature. Experimental
results are provided to demonstrate the advantages of the proposed
state reduction technique.

Index Terms— Intersymbol interference, Equalization, BCJR
algorithm, Reduced complexity

1. INTRODUCTION

BCJR-based SISO iterative algorithms (based on [1]) have been suc-
cessfully employed for both 1D [2] and 2D [3–6] equalization of
finite-state ISI channels with AWGN. Unlike hard decision algo-
rithms (such as the standard Viterbi algorithm), SISO algorithms
provide soft information, which can be iteratively refined to ulti-
mately provide a better hard decision. The computational complex-
ity of these algorithms grows exponentially with the size of the chan-
nel impulse response, or “mask”. To reduce complexity, a number
of reduced-state BCJR algorithms have been proposed, including,
e.g., the reduced state BCJR (RS-BCJR) of [7], the (quite similar)
RS-SISO algorithm of [8], the minimum sequence metric reduced-
state SISO (MSM RS-SISO) of [8], and the M-BCJR algorithm of
[9]. These algorithms, when used for equalization of finite-length
1D ISI channels, typically perform reasonably close to their cor-
responding full-state versions when the channels are minimum- or
maximum-phase. However, their performance suffers with mixed-
phase channels that have relatively high-magnitude center taps and
lower magnitude peripheral taps; we refer to such channel masks as
“center-weighted.”

The contributions and organization of the present paper are as
follows. In section 2, we present a new 1D truncated state SISO algo-
rithm. The new algorithm, based on the MSM RS-SISO of [8], uses
a truncation scheme more appropriate for center-weighted masks.
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Simulation results in subsection 2.1 show that the new 1D algo-
rithm significantly outperforms MSM RS-SISO for center weighted
masks. In section 3, we extend the new algorithm to work with the
iterative row-column soft decision feedback algorithm (IRCSDFA)
(of [3]) for 2D-ISI channels. The IRCSDFA is one of the best per-
forming 2D-ISI equalizers in the literature, and attains performance
close to the maximum-likelihood (ML) bound for a number of 2D
ISI channels. Simulation results presented in subsection 3.1 show
that the new 2D reduced-state IRCSDFA outperforms versions em-
ploying the MSM RS-SISO and M-BCJR reduced state algorithms,
for center-weighted 2D-ISI masks. In section 4, we draw conclu-
sions and point out several areas where additional work is needed.

1.1. Channel Model, Notation, and Related Work

We consider the finite-length ISI channel

r = h ∗ a + w, (1)

where h is the channel mask, a is the data, w contains indepen-
dent and identically distributed (i.i.d.) Gaussian random variables of
0 mean and variance N0/2, and “*” indicates 1- or 2-dimensional
convolution. For the 1D case, h = {hi}, 0 ≤ i ≤ L − 1, and
a = {ak} ∈ {−1, 1}, 0 ≤ k ≤ N − 1. For 2D, h = {hi,j},
0 ≤ i, j ≤ L− 1, and a = {ak,l}, 0 ≤ k, l ≤ N − 1. At the kth in-
put symbol, the input to the 1D ISI channel is ak, and the state is the
previous L − 1 symbols ak−1, . . . , ak−L−1. This leads to a trellis
diagram with 2L−1 states and two branches leaving (and entering)
each state.

At each trellis stage in its forward pass, the M-BCJR algorithm
of [9] selects theM states with the highest forward state probabilities
α(m) and retains only those states and their connecting branches.
The backward pass employs the same strategy, using the backward
state probabilities β(m) to independently choose the backward-pass
active states. In this paper, we employ a simplified M-BCJR that
runs the backward pass on the states and branches selected during
the forward pass. The standard log-MAP version of BCJR is then
employed to estimate the a posteriori probabilities (APPs) of the
input symbols.

The MSM RS-SISO of [8] defines truncated forward and back-
ward state vectors as in Fig. 1, which shows a simple example
for L = 3. The full-state trellis would have four states, but the
truncated-state trellis has only two states. A min-log version of the
BCJR algorithm is employed, with different branch metrics λf

k(i, j)

and λb
k(i, j) for the forward and backward passes; here i and j are

state indices of the reduced-state trellis. The branch metrics corre-
spond to the negative log of the γk(i, j) state transition probabilities.
The branch outputs necessary to compute the γk(i, j)s depend on
the missing symbols k − 2 and k + 2 for the forward and backward
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Fig. 1. Truncated state diagram for the MSM RS-SISO of [8], for a
1D mask of length L = 3.

passes; these missing symbols are estimated by keeping track of
surviving paths (in both the forward and backward directions) into
the truncated states. The log-min formulation means that the update
equations in both directions are similar to those of the Viterbi algo-
rithm. The update equations from [8] are now briefly summarized,
as they are the same equations used in the new algorithm presented
in section 2. The forward and backward state metric updates are

δk+1(j) = min
i∈F(j)

[δk(i) + λf
k+1(i, j)] (2)

ηk(i) = min
j∈B(i)

[ηk+1(j) + λb
k+1(i, j)], (3)

where F(j) = {i : i → j is an allowed forward transition} and
B(i) = {j : i ← j is an allowed backward transition}. The soft
output metrics for symbol ak are computed by minimizing over the
sums of the relevant forward and backward state metrics:

Mo(ak = m) = min
j∈C(m)

[δk(j) + ηk(j)], (4)

where C(m) = {j : at time k + 1, state element ak = m}, and
m ∈ {−1, 1}. Extrinsic information can be passed either to sub-
sequent iterations of the 1D MSM RS-SISO (“self-iterations”), or to
a MSM RS-SISO running in another scanning direction (for 2D ISI
detection); the output extrinsic information metric is

Mo
e (ak = m) = Mo(ak = m)−M i(ak = m), (5)

whereM i(ak = m) denotes input extrinsic information.

2. 1D REDUCED STATE ALGORITHMS FOR
CENTER-WEIGHTED MASKS

For center weighted masks with small magnitude peripheral taps,
the distance differences between surviving path candidates are very
small, causing the MSM RS-SISO of [8] to choose incorrect sur-
viving paths and leading to poor detection performance. To solve
this problem, we redefine the forward and backward truncated state
vectors as in Fig. 2, which shows an example for L = 3. In these
diagrams, the leading bits in the forward and backward directions,
which are the input bits in the full-state version, are simply ignored;
their contribution to the branch outputs is small due to the small
peripheral taps and can therefore be neglected. The indexing of the
update equations (2)-(4) is adjusted to account for the offset between
the estimated input bit in the forward and backward directions in the
new state vectors; no such offset is present in the original state vector
definitions shown in Fig. 1. Because the truncated bits are ignored,
there is no need to estimate them using surviving paths.

For the 1D mask of length L = 3, the fully connected trellis
has four states with two branches out of each state. By comparison,
both the algorithm of [8] (due to Chen and Chugg) and our proposed
algorithm has two states with two branches out of each state, which
is equivalent in complexity to the M-BCJR algorithm withM = 2.
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Fig. 2. Truncated state diagram for the new MSM RS-SISO algo-
rithm for center-weighted masks of length L = 3.

2.1. Simulation Results

We consider the 1D channel [α 1 α] with α = 0.1, 0.2, 0.8 and 1.0.
We compare the performance of our proposed algorithm with that of
the M-BCJR algorithm [9] for M = 2 and Chugg’s algorithm [8].
The union upper bound on the performance of the ML equalizer is
also shown for comparison; this bound is tight at high SNR. The re-
sults for α = 0.1, 0.2 are shown in Fig. 3; this figure also shows the
results of simple hard decision demodulation (without equalization)
for these channels. Fig. 4 depicts similar results for α = 0.8, 1.0.
With reference to the channel model (1), the SNR in all simulations
reported in this paper is

SNR = 10 log10

(
var [a ∗ h] /σ2

w

)
, (6)

where ∗ denotes 1- or 2-D convolution, and σ2
w is the variance of the

elements of the noise vectorw in (1).
When α = 0.1 or 0.2, M-BCJR with M = 2 gives the best

performance, which is very close to the ML bound. For α = 0.1,
our proposed algorithm is about 0.7 dB away and Chugg’s algorithm
is about 17 dB away from the ML bound, while the hard-decision
curve is about 2.9 dB from the bound. For α = 0.2, our proposed
algorithm is about 3 dB away and Chugg’s algorithm is about 11 dB
away from the ML bound, while the hard-decision curve is about
12.5 dB from the bound. When α = 0.8 or 1.0, M-BCJR with
M = 2 again gives the best performance, which is 0.6 dB away
from the ML bound. For α = 0.8 (α = 1.0), Chugg’s algorithm
is 0.8 dB (0.9 dB) away from the ML bound, whereas our proposed
algorithm completely fails in both cases. All comparisons are done
at a BER of 10−4.
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Fig. 3. 1D simulation results for masks [0.1 1 0.1] and [0.2 1 0.2].
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Fig. 4. 1D simulation results for masks [0.8 1 0.8] and [1 1 1].

Since our proposed algorithm truncates one state bit, it is ex-
pected to perform well when the contribution of the truncated mask
element is small. In the current example, this happens when the
value of α is small.

3. 2D REDUCED STATE ALGORITHMS FOR
CENTER-WEIGHTED MASKS

Fig. 5 shows the truncated state and input block for the row-trellis
of the iterative row-column soft decision feedback algorithm (IRCS-
DFA) of [3], for a 3 × 3 ISI mask. This modified IRCSDFA uses
MSMRS-SISOs (like those in [8]) in row and column directions; the
SISOs iteratively exchange extrinsic information until convergence
occurs. A similar input block, rotated right by 90 degrees, defines
the column trellis.

Trellis generation for the 3 × 3 mask on the mth image row is
initiated by placing the input marked (m,n) in Fig. 5 (the upper-
most of the three inputs) at the left end of the row, where the initial
values of the six state pixels (which include the three truncated state
pixels on the left) are −1 due to the boundary conditions, and the
vector of three input pixels can take eight different values. The en-
tire state/input block is then shifted right to pick up the next three
input pixels, and the previous three input pixels become the middle
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Fig. 5. 2D truncated state diagram for the forward row pass of the
IRCSDF algorithm of [3] on a 3 × 3 ISI channel. MSM-RS-SISOs
[8] are used in row and column directions.
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Fig. 6. New-style truncated state diagram for the forward row pass
of the IRCSDF algorithm on a 3×3 ISI channel. The newMSM-RS-
SISO algorithm of section 2 is used in row and column directions.

three state pixels. The full-state trellis therefore has 64 states with
8 branches out of each state. The Chugg-style truncation scheme
shown in Fig. 5 has eight states with eight branches out of each
state; the deleted state pixels are estimated by surviving paths in
the forward and backward passes of the MSM RS-SISO algorithm.
At each position (m,n), the trellis branch output vector consists of
three 3 × 3 inner products between the inverted mask and the pixel
values defined by the trellis; the upper inner product feedback from
two previously processed rows, the middle uses one feedback row,
and the lower uses received pixels only. The branch metric is the
squared Euclidean distance between the branch output and the re-
ceived pixel vector [r(m,n), r(m+ 1, n), r(m+ 2, n)].

Fig. 6 shows the truncated state diagram for an IRCSDFA
employing the new MSM-RS-SISO of section 2. This truncation
scheme works well for center weighted masks in which the relative
magnitude of the edge coefficients on each row (column) are much
smaller than those of the center coefficient. As with the trunca-
tion scheme shown in Fig. 5, the truncated trellis has 8 states and
8 branches per state. Thus, both truncated IRCSDF algorithms
are equivalent in complexity to an IRCSDFA which employs the
M-BCJR algorithm with M = 8 in its row and column detectors;
performance comparisons between these three algorithms are made
in the following section.

3.1. Simulation Results

We consider the 3 × 3 channel mask with rows (top to bottom)
[0 α 0], [α 1 α], and [0 α 0]. We compare the performance of our
proposed algorithm (corresponding to Fig. 6) with that ofM = 8M-
BCJR [9] and Chugg’s algorithm (corresponding to Fig. 5). The ML
bound is also shown for comparison. The results for α = 0.1, 0.2
are shown in Fig. 7; this figure also shows the results of simple hard
decision demodulation for these channels. Fig. 8 depicts similar re-
sults for “Channel B” and the averaging mask. The 3× 3 “Channel
B” mask [10] has rows (top to bottom) [c b c], [b 1 b], and [c b c],
where b = 0.352 and c = 0.0993; the 3 × 3 averaging mask has
all elements equal to 1.0. Six iterations of the IRCSDF algorithm
were used for all simulations shown in Fig. 7 and Fig. 8, with the
exception of the hard-decision simulations.

When α = 0.1, the performance of the new algorithm (0.7 dB
away from ML bound) is better than that of the M = 8 M-BCJR
algorithm (more than 6 dB away from ML bound). When α = 0.2,
the performance of the new algorithm (3 dB away from ML bound)
is again better than that of M = 8 M-BCJR (5.5 dB away from
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Fig. 7. 2D-ISI simulation results for two 3 × 3 center-weighted
masks with 1 in the center tap, 0s in the corner taps, and 0.1 (re-
spectively, 0.2) in the side taps.

ML bound). Chugg’s algorithm fails for both α = 0.1, 0.2, as does
hard-decision demodulation. For Channel B, the performance of
M = 8 M-BCJR (2 dB away from ML bound) is better than that
of Chugg’s algorithm (3.4 dB away from ML bound). For the av-
eraging mask, the performance of Chugg’s algorithm (1.3 dB away
fromML bound) is better than that ofM = 8M-BCJR (1.8 dB away
from ML bound). Our proposed algorithm fails for Channel B and
the averaging mask. All comparisons are done at a BER of 10−4.

4. CONCLUSIONS

This paper has developed and demonstrated a new reduced-state
BCJR algorithm for detection on 1- and 2-dimensional finite-size
ISI channels, that works especially well for center-weighted masks.
This paper has also presented detailed performance comparisons
between the newly proposed algorithm and two previously pub-
lished algorithms, which point out the strengths and weaknesses of
each algorithm. The 1D simulation results show that, for center-
weighted masks, the proposed algorithm significantly outperforms
the previously proposed MSM RS-SISO algorithm of [8]. However,
the simulations also demonstrate that the M-BCJR algorithm of [9]
gives by far the best performance for reduced-state 1D equalization,
for both center-weighted and relatively “flat” ISI masks. The situa-
tion changes when the reduced-state algorithms are used in the row
and column detectors of the 2D-ISI algorithm proposed in [3]. The
newly proposed algorithm performs best for center weighted 2D
masks with 0s in the corners, while the algorithm of [8] achieves the
best performance for the averaging mask. The “Channel B” mask,
based on sampling of a 2D Gaussian PDF [10], presented the most
challenging test for all three algorithms; at high SNR, the best per-
forming algorithm on “Channel B” was more than 2 dB away from
the ML bound. We conclude that improved reduced-state algorithms
are needed for 2D-ISI masks with Gaussian-like magnitude profiles.
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