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ABSTRACT

In this paper, we introduce a new nonlinear detector to improve
the performance of a weak BPSK system in the presence of like-
modulated cochannel interference and additive white Gaussian
noise (AWGN) with time varying characteristics. In our scheme
we use locally optimal (LO) detection rule in conjunction with
maximum entropy method (MEM) for probability density func-
tion (PDF) estimation of the observation noise. We utilize MEM
based onmoment generating function (MGF) constraints instead
of moments, as a new criterion. The estimated PDF based on
MEM-MGF is quite close to the true PDF and yields better uni-
form approximation, especially in the tail of PDF. The results
indicate that the new nonlinear detector outperforms conven-
tional matched filter, and approaches the optimal receiver when
desired signal is weak. For the new detector, there is no need
for any signal level estimation, which is a computational burden
when these parameters are time varying.

Index Terms— Maximum entropy method, Cochannel interfer-
ence

1. INTRODUCTION

In [1, 2], optimal detection for a BPSK signal in the presence of a
BPSK modulated cochannel interference and additive white Gaus-
sian noise has been studied. Individually optimal receiver (IOR)
which optimally decide about the desired signal bits is derived in
[1, 2] and its bit error rate (BER) is obtained in [3]. This optimal
multiuser detector assumes knowledge of the amplitudes of the de-
sired and interferer signals and also the level of white noise. On
the other hand, it is shown that BER performance of this optimal
multiuser detector asymptotically approaches the minimum BER in
AWGN at both small and large SIR’s [3]. Small SIR case is interest-
ing and important from practical viewpoint because in such a case
the degradation in the desired signal is more sever, and in this case,
more improvement in the BER performance is possible. Further-
more, when two systems work in the same time and frequency band,
the system for which the frequency band is allocated, can transmit
its signal with desired power, in contrast to the other system which
must keep its power low such that it does not cause degradation for
the first signal. In this architecture which is called an overlay system
in the spread spectrum context [4], the system with previously allo-
cated frequency band is considered as the powerful interference and
the other signal which is under degradation of the first signal, is as-
sumed as the weak desired signal. Hence, the desired signal should
be detected when SIR is low. Although, the optimal multiuser detec-
tors for such a case are already obtained, they require the knowledge
of the amplitudes of the desired and interferer signals. In this pa-
per, we propose a new detector based on MEM PDF estimation, and

LO detector design [5] for detection of the weak desired signal bits
with unknown signal and interference level. The new detector has
the capability to work in a non-Gaussian and time varying situations
and its performance approaches the lower bound, and also IOR de-
tector for small SIR’s. Lower bound is the case in which the level
of interference is zero and matched filter, the optimal linear detec-
tor, is used for detection of the desired signal. Our scheme is based
on adaptively estimating the non-Gaussian observation noise PDF at
the output of the desired signal correlator, and then, obtaining the
LO detector which is an asymptotically optimal single user detector.
In our scheme we use MEM which is used for PDF estimation of
the observation noise. MEM is reasonable because the most likely
PDF is one that includes more disorder and makes fewest assump-
tions about data, moreover, it is smoother and more probable [6].
Previously MEM method based on integer and fractional moments
constraints is used for PDF estimation [8]. The approximated PDF
obtained, resorting to MEM based on a few fractional moments, is
a more accurate estimate of a PDF. Now, we use MGF constraints
which yields even more accurate estimate of a PDF especially in the
tail of the PDF. By investigating the observation noise PDF we will
see that, in a natural setting, this PDF is a non-Gaussian requiring
a nonlinear detector design, because linear detectors are not optimal
when observation noise is non-Gaussian. The paper is organized as
follows. In section 2 problem formulation is presented which shows
the non-Gaussianity of the observation noise PDF. Section 3 con-
tains new proposed MEM based PDF estimation. The new proposed
detector is obtained in section 4. Sections 5 and 6 are allocated for
simulation results and conclusion.

2. SIGNAL MODEL FORMULATION

We assume the following model for the received signal as in [3]

r(t) = A0b0c0(t) + A1b1c1(t) + n(t) (1)

where bi and Ai, i = 0, 1 are the information bit and amplitude
of the ith user, respectively, n(t) is the AWGN noise with zero
mean and variance σ2 = N0/2, and A0b0c0(t) is the desired user’s
signal. Signal waveforms for desired and interferer are c0(t) =�

2/T cos(ω0t) and c1(t) =
�

2/T cos(ω0t + φ), respectively.
The cross correlation between c0(t) and c1(t) is defined as ρ �� T

o
c0(t)c1(t)dt, where T is the symbol duration, and zero timing

error and zero intersymbol interference (ISI) conditions are assumed
as in [3]. Using the basis function φ0(t) = c0(t) for the desired
signal, we obtain the following model for the sampled outputs of the
filters matched to the basis function φ0(t),

r = b0A0 + b1A1ρ + nφ0 (2)
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where n0 is the component of n(t) along φ0(t) which is also a zero
mean Gaussian random variable with variance σ2 = N0/2. In our
approach we use only one matched filter for the desired signal and
we use only its output (2), in contrast to IOR that uses two matched
filters, one for desired and one for interferer signal. In detecting the
desired bitA0b0, observation noise isw = b1I+n0, where I = ρA1

shows the level of interference. If the interferer transmits binary bits
with equal probability and independent of the random variable n0

the PDF of the observation noise is the convolution of the PDF of
interferer bits and Gaussian noise which yields

fW (w) =
1

2
[Nσ2(w − I) +Nσ2(w + I)] , (3)

where Nσ2(x) is defined as exp(−x2/2σ2)/
√

2πσ2. Thus, the
presence of additional signals result in a non-Gaussian behavior in
the channel noise. Hence, the underlying binary signal detection is
formulated in the following hypothesis testing problem for each bit
of the desired signal

H1 : r = A0 + w (4)
H0 : r = −A0 + w.

When the observation noise is non-Gaussian there are always non-
linear detectors with better performance with respect to the conven-
tional optimum linear detector; i.e. matched filter [5].

3. MEM PDF ESTIMATIONWITH MGF CONSTRAINTS

When parameters of the noise PDF in (3) are unknown or time vary-
ing, we estimate the PDF adaptively using MEM principle. In the
moment based MEM the following moments of an unknown PDF,
f(·), on the support set S are known

μαi = E(xαi) =

�
S

xαif(x) dx, i = 0, · · · , M (5)

where α0 = 0 and other αi’s can be integer (αi = i) or fractional
numbers. Considering the moment constraints the maximum entropy
PDF estimation yields the following functional form for PDF [6]

fM (x) = exp

�
M�

i=0

−λix
αi

�
, (6)

where λi’s are the Lagrangian multipliers that must be determined so
that fM (·) satisfies the moment constraints in (5). It is well known
that the infinite sequence of integer moments carries all the infor-
mation about the PDF if the Carleman condition is held [7]. This is
obvious by expanding the MGF near the origin as follows

φ(s) =

∞�
n=0

μn

n!
sn, s → 0. (7)

Hence, the PDF can be determined from infinite sequence of integer
moments and (7) if all the moments be finite and the series converge
absolutely near s = 0. We deduce from (7) that the most relevant
information carried by the sequence of integer moments can be com-
pacted in a few nonzero points in MGF. Hence, the estimated PDF
with properly chosen points of MGF is a better approximation of the
true PDF with respect to the same number of integer moments. Now,
we assume the MGF of an unknown PDF f(·), for i points is known;
or estimated

ϕ(si) =

�
S

f(x) exp (six) dx, i = 0, · · · , M (8)

where s0 = 0, our intention is to estimate f(·) in (8) using ϕ(si)’s.
This problem does not have a unique solution because there are many
PDF’s which satisfy above constraints. We invoke maximum en-
tropy principle to find a unique solution. By maximizing the natural
entropy functional H[f ] = − �

S
f(x) ln f(x)dx subject to MGF

constraints in (8), it is easy to show that the PDF has the following
functional form [6]

fM (x) = exp

�
−

M�
i=0

λi exp (six)

�
, (9)

where λi’s are the Lagrangian multipliers that must be determined
so that fM (·) satisfies the MGF constraints in (8). The entropy of
fM (·) is as follows

H[fM ] = −
�

S

fM (x) ln fM (x) dx =
M�

i=0

λiϕ(si). (10)

A bound on the absolute difference between two PDF’s is obtained
in [8] �

S

|fM (x)− f(x)|dx �
�

2(H(fM )−H(f)). (11)

Therefore convergence in entropy is translated to convergence in
PDF’s. By investigating the inequality in (11), we deduce that there
is always an optimal choice of λi’s and si’s in the sense that it ac-
celerates the convergence ofH(fM ) toH(f) and it can be obtained
via following constrained minimization [9]

{si, λi)}M
i=1 = arg min

si,λi

H[fM ] (12)

with MGF constraints in (8) and H(fM ) from (10). Since, fM (·)
is the PDF with maximum entropy among distributions with the
MGF constraints in (8), i.e., H(fM ) > H(f) for ∀ λi and si, the
above minimization corresponds to the minimum distance between
entropies and consequently PDF’s due to (11). From (8) with i = 0,
λ0 is

λ0 = ln

�
exp

�
−

M�
i=1

λi exp(six)

�
dx (13)

Using (10) and (13), the above minimization corresponds to

min
λi,αi

�
ln

� ∞

0

exp

�
−

M�
i=1

λi exp(siw)

�
dw +

M�
i=1

λiϕ(si)

�
,

where ϕ(si)’s are the MGF constraints, they must be substituted
by the estimate 1/n

	n
k=1 exp(siwk), sampled MGF, which is ob-

tained from the received data. As an appraisal of the PDF approxi-
mation we compute the relative error defined as

RE =
|True PDF−Approximated PDF|

True PDF
(14)

The underlying PDF in (3) is unimodal or bimodal based on the val-
ues of σ2 and m. The condition for bimodality is that the equation
f ′W (w) = 0 has two different nonzero solutions. It is easy to show
that

f ′W (w) =
exp(−I2

2σ2 )

σ2
√

2πσ2
exp(

−w2

2σ2
)



I sinh(

Iw

σ2
)− w cosh(

Iw

σ2
)

�
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Fig. 1. Estimated PDF for I = 1.1 and σ2 = 1.

this condition is equivalent to the condition that the following pair of
simultaneous equations has two different nonzero solutions

y = I tanh

�
Iw

σ2

�
(15)

y = w

As we see the slope of the curve in (15) is I2/σ2 tanh(Iw/σ2).
The condition for bimodality is that the slope of the curve in w = 0
should be more than the slope of the line which yields I2 > σ2

for bimodality of the PDF. We use the MEM based methods for the
revelation of bimodality where I = 1.1 and σ2 = 1 yielding the
following estimates for integer and fractional moment constraints
and the method based on MGF

fIM (x) = exp(−1.450− 0.094x2 − 0.012x4)

fFM (x) = exp(−1.761 + 1.006|x|0.989 − 0.692|x|1.733)

fMGF (x) = exp(−0.147− 0.964e−0.742|x| − 0.487e0.615|x|)

For the the noise in (3) we assumed the support set S = [0,∞), as
in [8]. Since, the observation noise PDF is even symmetric and the
sufficient information about PDF is available in the positive values,
we initially estimated the PDF for positive values and then we used
|·| for obtaining the PDF for all values. The estimated PDF’s and rel-
ative errors are depicted in Fig. 1 and Fig. 2. As we see the resolution
of the fractional moment and MGF based methods are higher than
integer moment case, because the integer method can’t distinguish
the bimodality of the PDF. Furthermore we see from Fig. 2 that the
MGF method yields a better approximation of the PDF’s tail. Ta-
ble 1 shows the convergence of the entropies for the three compared
methods. Another special case which is investigated in the section 5

Method H(fM )−H(f)
Integer moments 0.0051
Fractional moments 0.0045
MGF 0.0042

Table 1. Entropy differences for I = 1.1 and σ2 = 1.

where the number of the interferers changes.
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Fig. 2. Relative Error (RE) for I = 1.1 and σ2 = 1.

4. NEW DETECTOR FOR NON-GAUSSIAN TIME
VARYING CHANNELS

The LO detector is a nonlinear detector which is obtained for weak
signal detection in non-Gaussian noise by using first order Taylor se-
ries expansion about A0 = 0 in the log-likelihood ratio. Its decision
rule is [5]

b̃0 = sgn(Λ(r)) = sgn

�
−f ′W (r0)

fW (r0)

�
, (16)

By separating the terms exp(−w2/2σ2) and exp(−I2/2σ2) from
(3) and by using σ2 = N0/2 we obtain

fW (w)=
exp(−I2/2σ2)√

πN0

exp(−w2/2σ2) cosh(
Iw

σ2
), (17)

We substitute (17) in (16) to obtain the LO detector

b̃0 = sgn(Λ(r)) = sgn

�
2r

N0
− 2I

N0
tanh

�
2I

N0
r

��
. (18)

We note that this is a nonlinear detector which does not require the
knowledge of the level of the desired signalA0 in contrast to the IOR
detector. But it requires the estimates for I and N0. In the previous
section the estimated PDF based onMGF constraints is obtained. We
use the estimated PDFin the LO detection rule to obtain the asymp-
totically optimum detector which doesn’t require estimates for levels
of signal, interference and noise. We use (9) with | · | in (16) using
identity d|x|/dx = |x|/x to obtain

b̃0 = sgn

�
M�

i=0

λisi
|r|
r

esi|r|
�

. (19)

In fact the estimated PDF contains the level of interference and noise
in its functional form which can be determined adaptively in a time
varying situation.

5. SIMULATION RESULTS

BER performance of the obtained detectors evaluated in this sec-
tion using Monte Carlo simulation. In the simulation scenario we
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Fig. 3. BER of the different detectors for I = 3.

consider a BPSK system which receives signals in the presence of
a BPSK cochannel interference. We evaluate the IOR performance
which has complete knowledge about signal level, interference level
and noise power, as the best possible performance for a detector. We
also compare the results with the LO detector which has complete
knowledge about interference level and noise power but not signal
level. Matched filter (MF) performance for the cases where inter-
ference is not available (Lower Bound) and in the presence of the
interference are also shown in Fig. 3. As we see all the detectors
have performance close to the lower bound when signal is weak.
We also observe that performance of the obtained LO detector based
on MEM and MGF (MEM-MGF) constraints is the same as the LO
detector. As we see this detector has no knowledge about the param-
eters of the signal, noise and interference. It can adaptively estimate
the observation noise which leads to adaptive detector design based
on (19). We also observe that in Fig. 3 BER performance of the IOR
detector is far away from the lower bound and is close to the matched
filter detector, when SNR becomes high. This behavior of the IOR
detector which is apparent from simulation results can be confirmed
with BER equation which is obtained in [3]. Since, IOR detector
is the optimal detector for the underlying problem, we deduce that
every other detector, including our proposed detector, should have
such a behavior in its BER curve. We also see that LO based detec-
tor’s BER is even worse than matched filter in such a case. This is
because of the Taylor series approximation about A0 = 0, in the LO
detector, which is violated in high SNR case [5]. For such a case, we
switch to matched filter detector to obtain BER performance equal to
IOR. We also investigate PDF estimation methods for a case where
the number of interferences changes, two in this case, with levels
I1 = 1.2 and I2 = 1.3. The results for PDF estimation methods are

fFM (x) = exp(−1.906 + 0.869|x|1.051 − 0.692|x|1.479)

fMGF (x) = exp(0.286− 1.870e0.059|x| − 0.049e0.827|x|),

which are shown in Fig. 4. As we see in this case the performance of
the MGF method is better than fractional moments method for PDF
estimation, and detector design is straightforward based on (19).

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

x

f(x
)

exact PDF
MEM−MGF
MEM−FM

Fig. 4. PDF estimation for two interferers with levels I1 = 1.2 and
I2 = 1.3.

6. CONCLUSION

In this paper we propose a new method for MEM PDF estimation by
invoking MGF constraints. This method has better performance with
respect to the previously proposed MEM base PDF estimation meth-
ods in some cumbersome but real circumstances. We also obtain the
LO detector based on the new PDF estimation strategy which has
near optimal performance for weak signal cases. This detector has
the capability of adaptation in the cases where channel or interfer-
ence characteristic is time varying or unknown.
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[2] S. Verdú, Multiuser Detection, 1st ed. New York: Cambridge
Univ. Press, 1998.

[3] A. M. Rabiei and N. Beaulieu, “An analytic expression for
the BER of an individually optimal single cochannel interferer
BPSK receiver,” IEEE Tran. Commun. vol. 55, no. 1, Jan. 2007.

[4] H. V. Poor, “ Active interference suppression in CDMA overlay
systems,” IEEE J. Select. Areas Commun., vol. 19, no. 1, pp.
4-20, Jan. 2001.

[5] S. Kay, Fundamentals of Statistical Signal Processing-
Detection Theory, Englewood Cliffs, NJ: PTR Prentice-Hall,
1998.

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory,
NY: John Wiley, 1991.

[7] C. M. Bender, S. A. Orszag, “Advanced Mathematical Methods
for Scientists and Engineers,” McGraw–Hill, 1978.

[8] P. N. Inverardi, A. Petri, G. Pontuale, and A. Tagliani, “Stieltjes
moment problem via fractional moments,” ELSEVIER Applied
Mathematics and Computation, vol. 166, pp. 664-677, 2005.

[9] J. M. Browein and A. S. Lewis, “Convergence of best entropy
estimates,” SIAM J. Optimization, vol. 1, no. 2, pp. 191-205,
May 1991.

3196


