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Abstract—In this paper, we introduce two new reduced-
complexity algorithms on Sphere Decoding (SD). The two al-
gorithms execute in different ways to avoid unnecessary re-
computations. Compared with the existing modified SD, our algo-
rithms save a considerable amount of unnecessary computation
and also perform exact maximum-likelihood (ML) detection.

Index Terms—sphere decoding (SD), V-BLAST, maximum-
likelihood (ML) detection

I. INTRODUCTION

Multiple antenna systems can provide high spectral effi-

ciencies over a rich-scattering environment [9], [10]. Verti-

cal Bell Laboratories Layered Space-Time (V-BLAST) [8],

[7] is a widely known multiple antenna spatial multiplexing

system targeting high capacity. However, it can not fully

exploit the available diversity [14]. The associate maximum-

likelihood (ML) detection amounts to a constrained integer

least-square problem whose exact solution can be attained

by Sphere Decoding (SD). Although SD requires a high

computational complexity, it can achieve full diversity [14].

When the number of receive antennas is comparable or less

than that of transmit antennas, SD has a significant advantage

of performance over V-BLAST [14]. It has been proved that

in some range of signal-to-noise ratio (SNR), SD algorithm

is compuptationally efficient [12], [13]. Consequently, there

has recently been a growing interest in using SD for uncoded

MIMO systems and for multiuser detection in code division

multiple access(CDMA) systems [15].

The SD algorithm [1] was proposed by Fincke and Pohst

and it was first introduced in digital communications by

Viterbo and Boutros [2]. Damen et al. presented a modified

sphere decoding (MSD) to avoid some unnecessary compu-

tation [3]. In this paper, we propose two techniques to avoid

more unnecessary re-computation of SD and compare their

complexities with that of MSD algorithm.

The rest of the paper is organized as follows. Section II

presents the system model and introduces the SD algorithm.

Section III proposes two reduced-complexity SD algorithms.

Section IV presents the simulation results. We conclude this

paper in Section V.

II. SYSTEM MODEL AND ALGORITHM

Consider a symbol synchronized and uncoded MIMO sys-

tem with M transmit antennas and N receive antennas. The

equivalent discrete-time baseband model can be written as

yyy =
√

ρ

M
HsHsHs + vvv (1)

where ρ is the expected received SNR, sss = [s1, s2 · · · , sM ]T

is the transmitted symbol vector, in which each component

is independently drawn from a complex constellation Q.

yyy = [y1, y2 · · · , yN ]T is the received symbol vector, and

vvv = [v1, v2 · · · , vN ]T is an independent, identically distributed

(i.i.d) zero-mean complex Gaussian noise vector with variance

σ2 per dimension. HHH is an N × M channel matrix for the

flat fading channel whose elements hij are assumed to be

i.i.d zero-mean complex Gaussian variables with variance

0.5 per dimension. hij represents the channel gain from the

jth transmitter to the ith receiver. Moreover, the channel is

assumed perfectly known to the receivers.

Under the above assumptions, the ML detection of sss is well

known to be

sss
ML

= arg min
sss∈QM

‖yyy −HsHsHs‖2 (2)

where QM is M -dimensional constellation set. For a general

HHH , this problem is known to be NP-hard.

To solve a complex ML detection as an integer least squares

problem, the complex system model can be transformed into

equivalent real one as in [4],

[ R(yyy)
I(yyy)

]
=

√
ρ

M

[ R(HHH) −I(HHH)
I(HHH) R(HHH)

] [ R(sss)
I(sss)

]
+

[ R(vvv)
I(vvv)

]

(3)

where R(x) and I(x) denote the real and imaginary part of

x respectively.

We assume that the number of receiver is greater than that

of transmitter, i.e., N ≥ M . Let C0 be the squared radius of

an N-dimensional hypersphere centered at yyy. The lattice point

HsHsHs lies in a hypersphere of radius C0 if, and only if,

‖yyy −HsHsHs‖2 ≤ C0 (4)

Consider the QR factorization of the Matrix HHH:

HHH = QQQ

[
RRR
000

]
= [QQQ1 QQQ2]

[
RRR
000

]
(5)

where RRR is an M ×M upper triangular matrix with positive

diagonal elements, 000 is an (N − M) × M zero matrix, and

QQQ1 and QQQ2 represent the first M and last N −M orthonormal
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columns of QQQ, respectively. Therefore, the condition (4) can

be written as

C0 ≥ ‖QQQTyyy −QQQTQQQ

[
RRR
000

]
sss‖2

= ‖QQQT
1 yyy −RsRsRs‖2 + ‖QQQT

2 yyy‖2 (6)

Defining yyy′ = QQQT
1 yyy and C ′

0 = C0 − ‖QQQT
2 yyy‖2, (6) can be

simplified as

‖yyy′ −RsRsRs‖2 ≤ C ′
0 (7)

Due to the upper triangular form of RRR, the above inequality

implies,

M∑
j=i

(
y′

j −
M∑
l=j

rj,lsl

)2

≤ C ′
0 i = 1, 2 · · · , M (8)

When i = M , we can easily obtain the admissible interval

of sM . When i = M − 1, given value of sM , we can also

obtain the admissible interval of sM−1. When i = M − 2,

back-substitute the given value of sM and sM−1, we can get

the admissible interval of sM−2, and so on. More explicitly,

the range [LB(si), UB(si)]of integers si can be written as

LB(si) = max
{

Lc,

⌈
1

ri,i

(
y′

i −
∑M

j=i+1 ri,jsj−
√

C ′
0 −

∑M
j=i+1

∣∣y′
j −

∑M
l=j rj,lsl

∣∣2)⌉}
(9)

UB(si) = min
{

Uc,

⌊
1

ri,i

(
y′

i −
∑M

j=i+1 ri,jsj+
√

C ′
0 −

∑M
j=i+1

∣∣y′
j −

∑M
l=j rj,lsl

∣∣2)⌋}
(10)

where�x� is the smallest integer greater than x and �x� is the

greatest integer smaller than x. Lc and Uc are the lower and

upper bound of the constrained interval, respectively. For the

unconstrained integer least-squares problem, the lower bound

and upper bound are −∞ and ∞ respectively. si takes on

values in the order LB(si), LB(si) + 1, · · · , UB(si). This is

called natural spanning [1], [3]. Another spanning method in a

zig-zag order can be referred to [5], [6]. If LB(si) > UB(si),
then no si satisfies the inequalities (8), or the expanded path

does not belong to the sphere. In this case, the expanded path

goes back to the previous level and chooses the next candidate

to span. If a lattice point belonging to the sphere is found,

we calculate its square distance from the center and replace

current search squared radius. If no point inside the sphere

is found after spanning the interval [LB(sM ), UB(sM )], the

sphere is declared empty. Then we increase the search squared

radius to restart a new search.

III. REDUCED COMPLEXITY OF SD

One of the drawbacks of the original approach is that the

SD algorithm may respan value of si for some level of i, that

have already been spanned in the previous sphere. Damen et
al. [3] proposed a MSD algorithm that avoided the respanning

to reduce the complexity.

In fact, there still exists some re-computation of SD that

has not been found yet. For example, when the search climbs

down from level i to level i + 1 and then immediately climbs

up to level i again. In such case, only the value of si+1

is changed, but si+2, si+3, · · · , sM are unchanged. However

for both SD and MSD algorithms, we need to compute

ξi =
∑M

j=i+1 ri,jsj . Therefore, multiplication complexity of

both SD algorithm and MSD algorithm to compute ξi is M−i.
In fact, we do not need to recompute ξi again. We only need

to modify the ξi we have already obtained. As a result, the

complexity is significantly reduced in such case.

Next, we give the details of two new SD algorithms. In

order to illustrate the differences between our algorithms and

MSD, we present our algorithms in the similar structure to

MSD [3].

Algorithm I
• Step 1:(Initialization) Set i := M , TM := 0, dc := C ′

0,

q := M , ξj := 0, for j = 1, · · · , M .

• Step 2: If dc < Ti go to Step 4. Else

LB(si) := max
{

Lc ,

⌈
y′

i − ξi −
√

dc − Ti

ri,i

⌉}

UB(si) := min
{

Uc ,

⌊
y′

i − ξi +
√

dc − Ti

ri,i

⌋}

and set si := LB(si) − 1, k := i (k record the current

level)

• Step 3: (Natural Spanning of the admissible interval of

si) si := si + 1. If si ≤ UB(si) go to Step 5, else go to

Step 4.

• Step 4: ( Move one level down ) If i = M terminate,

else set i := i + 1 and go to Step 3.

• Step 5: (Move one level up)

If k �= i
{
q := k, p := i, sss′ := sss

}
. ( climbing down,

p record the ending level and sss′ store the current path

values.)

If i > 1 then, (Move one level up when current level

is not at the top.){
If i ≤ q (The current level i is above the last

climbing down level q)

ξi−1 :=
M∑
j=i

ri−1,jsj

else

ξi−1 := ξi−1 +
p∑

j=i

ri−1,j(sj − s′j).

Ti−1 := Ti + |y′
i − ξi − ri,isi|2

Let i := i − 1 and go to Step 2.

}

• Step 6: (A valid point is found) Compute

d̂ := T1 + |y′
1 − ξ1 − r1,1s1|2
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If d̂ < dc then let dc := d̂, save ŝss := sss, and update the

upper boundaries

UB(si) := min
{

Uc,

⌊
y′

l − ξl +
√

dc − Tl

rl,l

⌋}

for all l = 1, 2...M . Go to Step 3.

Our algorithm II reduce the complexity from another ap-

proach. The only difference from the algorithm I is step 5, so

we just give the step 5 of algorithm II as follows:

Algorithm II
• Step 5: If

(
k �= i and k < q

) {
q := k, sss′ := sss

}
( Climbing down occur and the current level is visited for

the first time, q record the starting level of the climbing

down, sss′ store the current path values.)

If i > 1 then, (Move one level up when current level

is not at the top.)

{
If ξi = 0 (ξi has never been calculated before.)

ξi−1 :=
M∑
j=i

ri−1,jsj

elseif si �= s′i ( The value of the current level is

changed, modify all the ξj that we have already obtained

above the current level.)

ξj := ξj + rj,i (si − s′i)
j = q, q + 1, · · · i − 1. (11)

Ti−1 := Ti + |y′
i − ξi − ri,isi|2

Let i := i − 1 and go to Step 2.

}

It is seen that the main difference between our algorithms

and MSD algorithm lies in step 5. Therefore, we provide the

Step 5 of MSD for the ease of comparison as follows.

MSD algorithm [3]

• Step 5: ( Decrease i: move one level up)

If i > 1 then,

{
ξi−1 :=

M∑
j=i

ri−1,jsj (12)

Ti−1 := Ti + |y′
i − ξi − ri,isi|2

Let i := i − 1 and go to Step 2.

}

The key idea of Algorithm I is that: when the search climbs

down, the last stored path is replaced by the current path. We

only updated ξi and it is modified according to the values of

the stored path and the values of the current path in Step 5. The

key idea of Algorithm II is that: for each span, if necessary, we

modify all the ξi above the current level which have already

been calculated. The MSD and our two algorithms have the

same searching paths. The main difference is Step 5 and it

is also the main time consuming. The MSD algorithm always

needs M − i multiplications to obtain ξi in any case, but the

proposed algorithms calculate ξi in more flexible ways.

An example is provided here to illustrate the computation

of ξi at each level. We assume that the search follows the path

of “2 down−→ 5
up→ 4

up→ 3 down−→ 6
up→ 5

up→ 4
up→ 3

up→ 2”. We also

assume the level 1 has never been visited yet. For Algorithm

I: When the search arrives at level 4, p = 5, q = 2 and ξ3

is calculated as ξ3 := ξ3 +
∑5

j=4 r3,j(sj − s′j). When the

search reaches level 4 , p = 6, q = 3 and ξ3 is calculated as

ξ3 := ξ3 +
∑6

j=4 r3,j(sj −s′j). For Algorithm II, ξi−1, · · · , ξ2

are modified according to the formula (11) if the value si is

changed. For MSD algorithm: in any case, ξi is calculated

from the formula (12).

Compare with MSD, the Algorithm I has less multiplication

for each time to calculate ξi. Therefore, it evidently reduces

the computation complexity. The Algorithm II does not have

such property. However, it also worth noting that ξi is not

always updated in Algorithm II. Only in the case si is changed.

This property leads its lower complexity compared with MSD,

which will be validated in the following simulations.

IV. SIMULATION RESULTS

In our simulations, we consider QPSK signal constellation

with average energy per bit fixed to Eb = 1, i.e., the average

symbol energy Esav
is 2. The elements of channel matrix HHH

are generated by independent Gaussian random variables of

variance 0.5 per dimension. The variance of AWGN per di-

mension is adjusted by σ2 = (MEsav
/2log2(4))10(−SNR/10)

[4].

The initial search radius C0 is very critical to the com-

plexity. As suggested in many papers such as [12], it can be

chosen according to the statistical description of the noise.

Note that ‖vvv‖2 is a χ2 random variable with 2N degree of

freedom. The initial search radius C0 was chosen to satisfy

Pr
{‖vvv‖2 ≤ C0

}
= 0.99. Using α as a tuning parameter, we

set C0 = ασ2 and selected α according to

∫ α

0

x(N−1)

Γ(N)
e−xdx = 0.99 (13)

where Γ(N) represents Gamma function. When no point is

found inside the sphere, the radius is increased by setting C0

satisfying Pr
{‖vvv‖2 ≤ C0

}
= 0.999 and then 0.9999, etc.

In Both MSD and our algorithms, the main time consuming

part is Step 5, especially when the number of transmit antennas

is large. Therefore, the number of multiplication in Step 5 is

used to compare the complexity of the three algorithms. We

plot the ratios of the complexity of our algorithms to MSD in

Fig. 1 and Fig. 2.

In simulation I, we consider the MIMO systems with

equal number of transmit antennas and receive antennas. In

simulation II, more receive antennas than transmit antennas are

considered. In both simulation figures, the solid lines represent

the complexity ratios of Algorithm I to MSD and the dash-dot

lines are Algorithms II. From these two figures, we conclude

that:
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Fig. 1. The average complexity ratios of our proposed algorithms to MSD
versus SEP on a logarithmic scale with equal number of receivers and
transmitters.
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Fig. 2. The average complexity ratios of our proposed algorithms to MSD
versus SEP on a logarithmic scale with more receivers.

1) The more transmit antennas, the larger ratio of complex-

ity reduction.

2) When the number of receive antennas is comparable to

transmit antennas, the Algorithm I requires less com-

plexity than the Algorithm II. However, Algorithm II

exhibits better complexity performance than Algorithm

I when the system has much more receive antennas.

3) The plots also show that the complexity ratios to MSD

can be approximated as a linear function of symbol error

probability (SEP) on a logarithmic scale.

V. CONCLUSION

In this paper, we proposed two new reduced-complexity

algorithms of SD. Simulation results show that the new algo-

rithms have lower complexity than modified sphere decoding

[3] to attain the ML solution. It is worth noting that, the key

ideas of the proposed algorithms to reduce computational com-

plexity can also be applied in generalized SD (i.e., N < M )

[11] and Schnorr-Euchner proposed SD algorithm [5], [6].
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