
HIGH-PERFORMANCE SCHEDULING ALGORITHM
FOR PARTIALLY PARALLEL LDPC DECODER

Cheng-Zhou Zhan, Xin-Yu Shih, and An-Yeu(Andy) Wu

Graduate Institute of Electronics Engineering, and

Department of Electrical Engineering, National Taiwan University
Taipei, 106, Taiwan, R.O.C.

ABSTRACT

In this paper, we propose a new scheduling algorithm

for the overlapped message passing decoding, which can be
applied to general low-density parity check (LDPC) codes.
The partially parallel LDPC architecture is commonly used
for reducing the area cost of the processing units. The
dependency of two kinds of processing units, check node
unit (CNU) and bit node unit (BNU), should be considered
to enhance the hardware utilization efficiency (HUE). Based
on the properties of the parity check matrix of LDPC codes,
the updating calculation of the CNU and BNU can be
overlapped to reduce the decoding latency by enhancing the
HUE with the matrix scheduling algorithm. By applying our
proposed LDPC scheduling algorithm to a (1944, 972)-
irregular LDPC code, we can get about 60% throughput
gain in average without any performance degradation.

Index Terms— LDPC, scheduling, overlapped, matrix,
partially-parallel

1. INTRODUCTION

Low-density parity check (LDPC) codes are first
introduced by Gallager in 1962 [1] and rediscovered by Dr.
MacKay in 1996 [2]. LDPC codes are suitable for high-
throughput required applications due to its low decoding
complexity and high parallelism. Besides the highly parallel
decoding algorithm, LDPC codes also have great error
correcting performance close to the Shannon limit [3] within
0.0045dB gap with enough block length.

An LDPC codeword can be iteratively decoded by the
updating computing of the check node units (CNU) and bit
node units (BNU). The message passing algorithm is
applied to the LDPC decoding where the parity check
equations and the bit updating equations are computed by
CNU and BNU, respectively. The LDPC codes mapped to a
fully-parallel structure will generally have higher
throughput than the partially parallel architecture, but the
area cost of the updating units, CNU and BNU, will also
high. Besides the disadvantage of high area cost, the fully
parallel architecture of LDPC code will also suffer from the

complex routing which will further increase the chip area
and causes longer routing paths, and the low hardware
utilization efficiency (HUE) which constraints us be not
able to put the throughput to the limit. On the other hand,
the partially parallel architecture of LDPC codes is adopted
for the reason of smaller hardware area but the problem of
HUE is still not be solved. The overlapped message passing
(OMP) architecture [4] where the updating of CNU and
BNU can be partially overlapped is proposed for the
partially parallel LDPC architecture to solve the problem of
low HUE. Some OMP decoding algorithms are proposed for
some specific structure of the LDPC codes [4] - [7], but
these algorithms can not be applied to general LDPC codes,
while an algorithm for general LDPC codes is also proposed
in [8]. In this paper, we propose a higher-performance
scheduling algorithm applied for general LDPC codes.

This paper is organized as follows. Section 2 reviews
the LDPC codes and the partially parallel architecture.
Section 3 briefly reviews the OMP architecture and our
proposed scheduling algorithm. The experimental results are
shown is Section 4. Finally, Section 5 concludes the paper.

2. GENERAL LDPC DECODER ARCHITECTURE

In this section, basic LDPC decoder concept will be
introduced and the architecture of a general LDPC decoder
will also be illustrated.

2.1. LDPC Codes

A (n, j, k)-regular LDPC codes is defined when LDPC
is first introduced by Galleger. The symbols n, k, and j
indicate the column number, column weight, and row
weight of the LDPC matrix, respectively. The column
weight k and the row weight j indicate the number of ‘1’ in
each column and row of the LDPC matrix. Even the LDPC
matrix is a low density matrix, the matrix connection
complexity is still considerable in the practical applications.
The partially parallel architecture is adopted due to the
property of being good at trading off between the
throughput and area.

31771-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

2.2. Partially Parallel Decoder Architecture

The fully parallel LDPC decoder architecture suffers
from the high area cost of the processing units due to the
updating of each updating requires a CNU or BNU for
computing. The numbers of CNU and BNU required for a
fully-parallel decoder equal to the numbers of the row and
column of the LDPC matrix. In spite of the fully parallel
architecture has the advantage of high throughput, it also
suffers from the complex routing between the processing
units, which will cause larger chip area and longer routing
paths. Take a (6, 2, 3)-regular LDPC codes for example. We
may use only two check node units and three bit node units
for partially parallel LDPC decoding as illustrated in Fig. 1.
The terms ma,b indicates the node located at the a-th row and
b-th column, and the term Ii is the i-th intrinsic information.

Fig. 1 Partially parallel architecture of LDPC decoder

3. SCHEDULING ALGORITHM OF LDPC MATRIX

In non-overlapped message passing decoding structure,

the BNU updating can only be performed after all the CNU
updating are done, and the CNU updating can only be
executed after all the BNU updating of the last iteration are
finished. The updating of CNU and BNU can be partially
overlapped after some scheduling algorithms.

3.1. Overlapped Message Passing Algorithm

The overlapped message passing algorithm is first
proposed in [4]. We use only one CNU and one BNU here
to perform the decoding process to justify the scheduling
algorithms. The reason why we just use single CNU and
single BNU here is it will be a fair condition to justify if a
scheduling algorithm is better than others or not. In other
words, if a scheduling algorithm applied to a LDPC matrix
under this condition is better than others, it will always have

better or equal performance on HUE under any other
parallel-processing condition. Assume that we have a LDPC
matrix with m row and n columns, and our decoding process
needs t iteration to complete the decoding. Fig. 2(a) shows
that tnm)(cycles are taken with non-OMP structures,
while Fig. 2(b) shows we need only)(wtn cycles to
complete the decoding process. The symbol w is the waiting
time of BNU at the beginning of the decoding.

(a)

(b)

Fig. 2 LDPC decoding (a) without scheduling
(b) with scheduling.

By observing the LDPC matrix, Fig. 3(a) and (b) shows

the matrix before and after scheduled by row and column
permutation only. We define the row and column number of
a LDPC matrix to be m and n, and p and q are the length of
the bottom-left and upper-right isosceles right triangle
composed of the ‘0’ elements. When the iteration number is
large enough for us to ignore the waiting time at the
beginning, the decoding throughput gain compared to the
straight-forward decoding is

),min()(,
)()(

nmqp
qpnm

nm
gainthroughput (1)

),min()(,
),max(

nmqp
nm

nmgainthroughput (2)

Under the condition that we use single CNU and BNU,

n is always greater than m. In other applications with more
processing units, we can treat m and n as the numbers of
total cycles needed to complete all the row and column
updating with given CNUs and BNUs, respectively. By
equation (1) and (2), we can learn that the best performance
of any scheduling algorithm will occur when (p + q) is
equal or greater than m. The equation (2) can be also
seemed as the limit of a scheduling algorithm when given a
fixed number of CNUs and BNUs. In the case of Fig. 3, m =
6, n = 12, p = 3, and q = 4, we can find that mqp)(.
The throughput gain will be

5.1
12

126
),max(nm

nm
gainthroughput (3)

CNU BNU CNU …… CNU
m n

1st iteration t-th iteration

BNU BNU
2nd

BNU BNU … BNU
CNU CNU CNU

1st iteration t-th iteration
2nd iteration

w

Check
Node
Unit

Bit Node
Unit

m1, 1 m1, 2 m1, 3 m1, 4

m2, 1 m2, 2 m2, 3 m2, 4

m3, 1 m3, 2 m3, 3 m3, 4

m1, 5

m2, 5

m3, 5

m1, 6

m2, 6

m3, 6

m3, 1 m3, 2 m3, 3 m3, 4 m3, 5 m3, 6

mux

mux

I1 I2 I3 I4 I5 I6

mux

Check
Node
Unit

de-
mux

mux

de-
mux

demux

Bit Node
Unit

mux

mux

demux

Bit Node
Unit

mux

mux

demux

3178

(a) (b)

Fig. 3 LDPC matrix (a) without scheduling algorithm (b) applied

with the scheduling algorithm.

3.2. Our Proposed Scheduling Algorithm

It is almost impossible to find out the optimum
schedule with full-search method for a large LDPC matrix.
There are several scheduling algorithms proposed for quasi-
cyclic LDPC codes [4]-[7], and also some algorithm for
general LDPC codes. Compared with [8], our algorithm is
more robust, and get a better scheduling performance. The
schedule of the LDPC decoding will be arranged before we
design our hardware so all scheduling algorithms are off-
line computing, and different scheduling algorithms won’t
cause any extra hardware overhead.

Our proposed scheduling algorithm can be summarized
as the flow chart shown in Fig. 4.

Fig. 4 The flow chart of our LDPC scheduling algorithm.

The scheduling algorithm we propose can be divided

into two phases. In the first phase, we try to find out the
blank index of each ‘0’ element. We first put a ‘0’ element
to the top-right corner by matrix row and column
permutation. The blank index means the side length of the
zero isosceles right triangle, which surrounds the ‘0’
element in the top-right corner, we can find also by row and
column permutation only. The concept of this phase is
similar to that of ref. [8]. The main difference is the
algorithm in [8] tries to collect all ‘1’ elements close to the
diagonal, while we just try to form a large zero isosceles
right triangle in the corner of the matrix in this phase. The
steps of the phase 1 are listed as follows, and an example is
shown in Fig. 5.

Step1: Put one ‘0’ element to the top-right corner by matrix

row and column permutation, and permute all ‘0’s in
the same column to make them connected.

Step2: The number of the 0’s in other columns, which are in

the same rows with that of the most right permuted
columns, is called common zero number (CZN). If
one column has no ‘0’ element in the same row with
the corner ‘0’ element, we set the CZN of the
column to be ‘X’ which means we don’t care about
the CZN of this column. We iteratively put the
columns with maximum CZN to the right side of the
matrix.

Step3: After Step 2, we can find out a zero isosceles right
triangle located at the corner, and the blank index of
the corner ‘0’ element can be derived. Then go back
to step 1 and find out the blank index of all other
zeros. Fig. 6 shows all the blank indexes of each ‘0’
element.

(a) (e)

(b) (f)

(c) (g)

(d)

Fig. 5 (a) - (g) show the process of the blank index finding.

Fig. 6 All the blank indexes of the ‘0’ elements

In phase 2, we have the coarse tune and fine tune stages.

The steps of phase 2 are listed below.

Step1: We put the largest isosceles right triangle found in

phase 1 to the corner, and set the free space region.
The free space indicates the region having no rows or
columns in common with the zero isosceles right
triangle, such as Fig. 7 shows. We can then find the

Given a LDPC
matrix

Blank index finding

Coarse Tune

Fine Tune

Matrix Scheduling
Complete

No

Yes

Phase 1

Phase 2

Try over

remaining

combination

p

q

3179

number of ‘0’ within the free space of each row and
denote the number as zero number (ZN) in Fig. 7(a).

Step2: Permute the row with greater ZN closer to bottom. In
this case, the ZNs of the two rows in the free space
are both 5 so permutation is not neededthe rows here.

Step3: Now we check the bottom-zero number (BZN) of the
columns related to the free space. The BZN means
the number of consecutive ‘0’ elements from bottom
up in each column, such as Fig. 7(b). After checking
the BZN, we permute the columns from left to right
in the descending order of BZN, such as Fig. 7(c). In
this example, we have an isosceles right triangle
located at the bottom-left corner, whose side length
equals to 3. The course tune is done in this step.

 (a)

(b) (c)

Fig. 7 (a) ZN of each row in the free space
(b) BZN of each column in the free space

 (c) The columns after permutation in the descending order of BZN.

From the course tune steps, we found p and q, which
indicate the side lengths of bottom-left and top-right triangle,
are 3 and 4, respectively. As we have mentioned before, the
greater (p + q) is the higher HUE might be reached with the
schedule. Because we have know that the value of (p + q) is
at least 7 after the course tune and the maximum blank
index found in phase 1 is 4, the maximum value of (p + q)
will never exceed (4 + 4) = 8. So we have to only try to find
out if there’s any permutation leading to p = q = 4. The fine
tune steps are described as follows.

Step1: Based on the result of (p + q) values derived in the

course tune steps, try to find out any possible
permutation by using the blank indexes derived in
phase 1. In other words, we can iteratively put the ‘0’
elements with maximum blank index to the corner,
and try to make large triangles at both corner.

4. EXPERIMENTAL RESULTS

By applying our scheduling algorithm to a 1944972
LDPC matrix and assume the iteration number is large
enough for us to ignore the waiting time at the beginning of
the decoding process. We can summarize the performance

comparison in Table I. The parallelism (g, h) means we use
g CNU and h BNU for partially parallel decoding. It’s
obvious that the performance of our algorithm is much
better than that of the referenced paper. In some situations
in the table, the throughput gain is limited to be 1.5 due to
the natural restriction described in equation (1) and (2).

Table I Comparison of the throughput gain.

5. CONCLUSIONS

In this paper, we have proposed a new LDPC
scheduling algorithm for enhancing the throughput by
utilizing the property of the overlapped message passing
architecture. The proposed scheduling algorithm in this
work is suitable for all kinds of LDPC codes. By applying
the scheduling algorithm, we can achieve about 60% higher
throughput gain in average compared with non-OMP
architecture. The scheduling algorithm for LDPC codes will
not cause any performance degradation when decoding.

6. REFERENCES

[1] R. G. Galleger, “Low density parity check codes,” IRE Trans.
Info. Theory, vol. IT-8, pp. 21-28, 1962.
[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit
performance of low-density parity check codes,” Electron. Lett.,
vol. 32, p. 1645, 1996.
[3] S. Chung, D. Forney, T. Richardson, and R. Urbanke, “On the
design of low-density parity-check codes within 0.0045 db of the
Shannon limit,” IEEE Comm. Letters, vol. 5, pp. 58-60, Feb. 2001.
[4] Y. Chen, K. K. Parhi, “Overlapped message passing for quasi-
cyclic low-density parity check codes,” IEEE Trans. Circuits and
Systems, vol. 51, pp. 1106-1113, Jun. 2004.
 [5] Y. Dai and Z. Yan, "Optimal Overlapped Message Passing
Decoding for Quasi-Cyclic Low-Density Parity-Check Codes," in
Proc. Global Telecomun. Conf. (Globecom), vol. 4, pp. 2395--
2399, Dec. 2005.
[6] Daesun Oh, Parhi K.K., “Efficient Highly-Parallel Decoder
Architecture for Quasi-Cyclic Low-Density Parity-Check Codes,”
IEEE International Symposium on Circuits and Systems, 2007.
[7] Chen N., Dai Y., Yan Z., “Partly Parallel Overlapped Sum-
Product Decoder Architectures for Quasi-Cyclic LDPC Codes,”
IEEE Workshop on Signal Processing Systems Design and
Implementation, pp.220-225, Oct. 2006.
[8] I. Park and S. Kang, "Scheduling Algorithm for Partially
Parallel Architecture of LDPC Decoder by Matrix Permutation," in
Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 6, pp.
5778--5781, May 2005.

Parallelism

(1, 1)
(1, 2)
(2, 2)
(2, 4)
(4, 4)
(4, 8)

Throughput gain
with our algorithm

Throughput gain with the
algorithm in [8]

1.5
1.73
1.5
1.71
1.5
1.7

1.23
1.26
1.2
1.26
1.21
1.25

free space

3180

