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ABSTRACT 

 
In this paper, we propose a new scheduling algorithm 

for the overlapped message passing decoding, which can be 
applied to general low-density parity check (LDPC) codes. 
The partially parallel LDPC architecture is commonly used 
for reducing the area cost of the processing units. The 
dependency of two kinds of processing units, check node 
unit (CNU) and bit node unit (BNU), should be considered 
to enhance the hardware utilization efficiency (HUE). Based 
on the properties of the parity check matrix of LDPC codes, 
the updating calculation of the CNU and BNU can be 
overlapped to reduce the decoding latency by enhancing the 
HUE with the matrix scheduling algorithm. By applying our 
proposed LDPC scheduling algorithm to a (1944, 972)-
irregular LDPC code, we can get about 60% throughput 
gain in average without any performance degradation. 
 

Index Terms— LDPC, scheduling, overlapped, matrix, 
partially-parallel 
 

1. INTRODUCTION 
 

Low-density parity check (LDPC) codes are first 
introduced by Gallager in 1962 [1] and rediscovered by Dr. 
MacKay in 1996 [2]. LDPC codes are suitable for high-
throughput required applications due to its low decoding 
complexity and high parallelism. Besides the highly parallel 
decoding algorithm, LDPC codes also have great error 
correcting performance close to the Shannon limit [3] within 
0.0045dB gap with enough block length. 

An LDPC codeword can be iteratively decoded by the 
updating computing of the check node units (CNU) and bit 
node units (BNU). The message passing algorithm is 
applied to the LDPC decoding where the parity check 
equations and the bit updating equations are computed by 
CNU and BNU, respectively. The LDPC codes mapped to a 
fully-parallel structure will generally have higher 
throughput than the partially parallel architecture, but the 
area cost of the updating units, CNU and BNU, will also 
high. Besides the disadvantage of high area cost, the fully 
parallel architecture of LDPC code will also suffer from the 

complex routing which will further increase the chip area 
and causes longer routing paths, and the low hardware 
utilization efficiency (HUE) which constraints us be not 
able to put the throughput to the limit. On the other hand, 
the partially parallel architecture of LDPC codes is adopted 
for the reason of smaller hardware area but the problem of 
HUE is still not be solved. The overlapped message passing 
(OMP) architecture [4] where the updating of CNU and 
BNU can be partially overlapped is proposed for the 
partially parallel LDPC architecture to solve the problem of 
low HUE. Some OMP decoding algorithms are proposed for 
some specific structure of the LDPC codes [4] - [7], but 
these algorithms can not be applied to general LDPC codes, 
while an algorithm for general LDPC codes is also proposed 
in [8]. In this paper, we propose a higher-performance 
scheduling algorithm applied for general LDPC codes. 

This paper is organized as follows. Section 2 reviews 
the LDPC codes and the partially parallel architecture. 
Section 3 briefly reviews the OMP architecture and our 
proposed scheduling algorithm. The experimental results are 
shown is Section 4. Finally, Section 5 concludes the paper. 
 

2. GENERAL LDPC DECODER ARCHITECTURE 
 

In this section, basic LDPC decoder concept will be 
introduced and the architecture of a general LDPC decoder 
will also be illustrated.  
 
2.1. LDPC Codes 
 

A (n, j, k)-regular LDPC codes is defined when LDPC 
is first introduced by Galleger. The symbols n, k, and j 
indicate the column number, column weight, and row 
weight of the LDPC matrix, respectively. The column 
weight k and the row weight j indicate the number of ‘1’ in 
each column and row of the LDPC matrix. Even the LDPC 
matrix is a low density matrix, the matrix connection 
complexity is still considerable in the practical applications. 
The partially parallel architecture is adopted due to the 
property of being good at trading off between the 
throughput and area. 
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2.2. Partially Parallel Decoder Architecture 
 

The fully parallel LDPC decoder architecture suffers 
from the high area cost of the processing units due to the 
updating of each updating requires a CNU or BNU for 
computing. The numbers of CNU and BNU required for a 
fully-parallel decoder equal to the numbers of the row and 
column of the LDPC matrix. In spite of the fully parallel 
architecture has the advantage of high throughput, it also 
suffers from the complex routing between the processing 
units, which will cause larger chip area and longer routing 
paths. Take a (6, 2, 3)-regular LDPC codes for example. We 
may use only two check node units and three bit node units 
for partially parallel LDPC decoding as illustrated in Fig. 1. 
The terms ma,b indicates the node located at the a-th row and 
b-th column, and the term Ii is the i-th intrinsic information.  
 

 
 

Fig. 1 Partially parallel architecture of LDPC decoder 
 
3. SCHEDULING ALGORITHM OF LDPC MATRIX 

 
In non-overlapped message passing decoding structure, 

the BNU updating can only be performed after all the CNU 
updating are done, and the CNU updating can only be 
executed after all the BNU updating of the last iteration are 
finished. The updating of CNU and BNU can be partially 
overlapped after some scheduling algorithms.  
 
3.1. Overlapped Message Passing Algorithm 
 

The overlapped message passing algorithm is first 
proposed in [4]. We use only one CNU and one BNU here 
to perform the decoding process to justify the scheduling 
algorithms. The reason why we just use single CNU and 
single BNU here is it will be a fair condition to justify if a 
scheduling algorithm is better than others or not. In other 
words, if a scheduling algorithm applied to a LDPC matrix 
under this condition is better than others, it will always have 

better or equal performance on HUE under any other 
parallel-processing condition. Assume that we have a LDPC 
matrix with m row and n columns, and our decoding process 
needs t iteration to complete the decoding. Fig. 2(a) shows 
that tnm )(  cycles are taken with non-OMP structures, 
while Fig. 2(b) shows we need only )( wtn  cycles to 
complete the decoding process. The symbol w is the waiting 
time of BNU at the beginning of the decoding.  

 

 
(a) 

 

 
(b) 

Fig. 2 LDPC decoding (a) without scheduling  
(b) with scheduling. 

 
By observing the LDPC matrix, Fig. 3(a) and (b) shows 

the matrix before and after scheduled by row and column 
permutation only. We define the row and column number of 
a LDPC matrix to be m and n, and p and q are the length of 
the bottom-left and upper-right isosceles right triangle 
composed of the ‘0’ elements. When the iteration number is 
large enough for us to ignore the waiting time at the 
beginning, the decoding throughput gain compared to the 
straight-forward decoding is 
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Under the condition that we use single CNU and BNU, 

n is always greater than m. In other applications with more 
processing units, we can treat m and n as the numbers of 
total cycles needed to complete all the row and column 
updating with given CNUs and BNUs, respectively. By 
equation (1) and (2), we can learn that the best performance 
of any scheduling algorithm will occur when (p + q) is 
equal or greater than m. The equation (2) can be also 
seemed as the limit of a scheduling algorithm when given a 
fixed number of CNUs and BNUs. In the case of Fig. 3, m = 
6, n = 12, p = 3, and q = 4, we can find that mqp )( . 
The throughput gain will be  
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(a)                                               (b) 

 
Fig. 3 LDPC matrix (a) without scheduling algorithm (b) applied 

with the scheduling algorithm. 
 

3.2. Our Proposed Scheduling Algorithm 
 

It is almost impossible to find out the optimum 
schedule with full-search method for a large LDPC matrix. 
There are several scheduling algorithms proposed for quasi-
cyclic LDPC codes [4]-[7], and also some algorithm for 
general LDPC codes. Compared with [8], our algorithm is 
more robust, and get a better scheduling performance. The 
schedule of the LDPC decoding will be arranged before we 
design our hardware so all scheduling algorithms are off-
line computing, and different scheduling algorithms won’t 
cause any extra hardware overhead. 

Our proposed scheduling algorithm can be summarized 
as the flow chart shown in Fig. 4. 
 

 
Fig. 4 The flow chart of our LDPC scheduling algorithm. 
 
The scheduling algorithm we propose can be divided 

into two phases. In the first phase, we try to find out the 
blank index of each ‘0’ element. We first put a ‘0’ element 
to the top-right corner by matrix row and column 
permutation. The blank index means the side length of the 
zero isosceles right triangle, which surrounds the ‘0’ 
element in the top-right corner, we can find also by row and 
column permutation only. The concept of this phase is 
similar to that of ref. [8]. The main difference is the 
algorithm in [8] tries to collect all ‘1’ elements close to the 
diagonal, while we just try to form a large zero isosceles 
right triangle in the corner of the matrix in this phase. The 
steps of the phase 1 are listed as follows, and an example is 
shown in Fig. 5. 
 
Step1: Put one ‘0’ element to the top-right corner by matrix 

row and column permutation, and permute all ‘0’s in 
the same column to make them connected.  

Step2: The number of the 0’s in other columns, which are in 

the same rows with that of the most right permuted 
columns, is called common zero number (CZN). If 
one column has no ‘0’ element in the same row with 
the corner ‘0’ element, we set the CZN of the 
column to be ‘X’ which means we don’t care about 
the CZN of this column. We iteratively put the 
columns with maximum CZN to the right side of the 
matrix. 

Step3: After Step 2, we can find out a zero isosceles right 
triangle located at the corner, and the blank index of 
the corner ‘0’ element can be derived. Then go back 
to step 1 and find out the blank index of all other 
zeros. Fig. 6 shows all the blank indexes of each ‘0’ 
element. 

       
(a)                                         (e) 

      
(b)                                         (f) 

      
(c)                                         (g) 

 
(d)                          

Fig. 5 (a) - (g) show the process of  the blank index finding. 
 

 
Fig. 6 All the blank indexes of the ‘0’ elements 

 
In phase 2, we have the coarse tune and fine tune stages. 

The steps of phase 2 are listed below. 
 
Step1: We put the largest isosceles right triangle found in 

phase 1 to the corner, and set the free space region. 
The free space indicates the region having no rows or 
columns in common with the zero isosceles right 
triangle, such as Fig. 7 shows. We can then find the 
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number of ‘0’ within the free space of each row and 
denote the number as zero number (ZN) in Fig. 7(a).  

Step2: Permute the row with greater ZN closer to bottom. In 
this case, the ZNs of the two rows in the free space 
are both 5 so permutation is not neededthe rows here. 

Step3: Now we check the bottom-zero number (BZN) of the 
columns related to the free space. The BZN means 
the number of consecutive ‘0’ elements from bottom 
up in each column, such as Fig. 7(b). After checking 
the BZN, we permute the columns from left to right 
in the descending order of BZN, such as Fig. 7(c). In 
this example, we have an isosceles right triangle 
located at the bottom-left corner, whose side length 
equals to 3. The course tune is done in this step.  

 

 
       (a) 

 
(b)                                          (c) 

Fig. 7 (a) ZN of each row in the free space  
(b) BZN of each column in the free space 

 (c) The columns after permutation in the descending order of BZN. 
 

From the course tune steps, we found p and q, which 
indicate the side lengths of bottom-left and top-right triangle, 
are 3 and 4, respectively. As we have mentioned before, the 
greater (p + q) is the higher HUE might be reached with the 
schedule. Because we have know that the value of (p + q) is 
at least 7 after the course tune and the maximum blank 
index found in phase 1 is 4, the maximum value of (p + q) 
will never exceed (4 + 4) = 8. So we have to only try to find 
out if there’s any permutation leading to p = q = 4. The fine 
tune steps are described as follows. 
 
Step1: Based on the result of (p + q) values derived in the 

course tune steps, try to find out any possible 
permutation by using the blank indexes derived in 
phase 1. In other words, we can iteratively put the ‘0’ 
elements with maximum blank index to the corner, 
and try to make large triangles at both corner. 

       
 

4. EXPERIMENTAL RESULTS 
 

By applying our scheduling algorithm to a 1944972  
LDPC matrix and assume the iteration number is large 
enough for us to ignore the waiting time at the beginning of 
the decoding process. We can summarize the performance 

comparison in Table I. The parallelism (g, h) means we use 
g CNU and h BNU for partially parallel decoding. It’s 
obvious that the performance of our algorithm is much 
better than that of the referenced paper. In some situations 
in the table, the throughput gain is limited to be 1.5 due to 
the natural restriction described in equation (1) and (2). 

 
Table I Comparison of the throughput gain. 

 
 

5. CONCLUSIONS 
 

In this paper, we have proposed a new LDPC 
scheduling algorithm for enhancing the throughput by 
utilizing the property of the overlapped message passing 
architecture. The proposed scheduling algorithm in this 
work is suitable for all kinds of LDPC codes. By applying 
the scheduling algorithm, we can achieve about 60% higher 
throughput gain in average compared with non-OMP 
architecture. The scheduling algorithm for LDPC codes will 
not cause any performance degradation when decoding.  
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