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Abstract— In this paper, a practical pipelined K-best lattice decoder
featuring efficient operation over infinite complex lattices is proposed.
This feature is a key element that enables it to operate at a significantly
lower complexity than currently reported schemes. The main innovation
is a simple means of expanding/visiting the intermediate nodes of the
search tree on-demand, rather than exhaustively or approximately, and
also directly within the complex-domain framework. In addition, a
new distributed sorting scheme is developed to keep track of the best
candidates at each search phase; the combined expansion and sorting
cores are able to find the K best candidates in just K clock cycles. Its
support of unbounded infinite lattice decoding distinguishes our work
from previous K-best strategies and also allows its complexity to scale
sub-linearly with modulation order. Since the expansion and sorting cores
cooperate on a data-driven basis, the architecture is well-suited for a
pipelined parallel VLSI implementation of the proposed K-best lattice
decoder. Comparative results demonstrating the promising performance,
complexity and latency profiles of our proposal are provided in the
context of the 4x4 MIMO detection problem.

Index Terms— Breadth-first search, K-Best algorithm, sub-optimal
detection, MIMO detection, IEEE802.11m.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems have recently at-
tracted a lot of attention for achieving large spectral efficiency,
which makes it the technology of choice in many standards such
as IEEE802.11n, IEEE802.16m, and IEEE 802.20. One of the main
challenges in exploiting the potential of MIMO systems is to design
low-complexity high-throughput detection schemes, which are suit-
able for efficient VLSI realization, to implement low-power MIMO
receivers with near-maximum-likelihood (ML) performance.

However, the complexity of the exhaustive-search optimal ML
detection scheme grows exponentially with the number of transmit
antennas and the constellation order. Therefore, suboptimal lower-
complexity approaches need to be developed in real applications.
Depending on how they carry out the non-exhaustive search, detector
methods generally fall into two main categories, namely the depth-
first search, and breadth-first search. Sphere decoding (SD) is the
most attractive depth-first approach whose performance is ML under
the assumption of unlimited execution time, [1]. However, the actual
runtime of the algorithm is dependent not only on the channel
realization, but also on the operating SNR. Thus leading to a variable
throughput rate, which results in an extra overhead in the hardware
due to the extra required I/O buffers and lower hardware utilization.

Among the breadth-first search methods, the most well-known
approach is the K-Best algorithm (a.k.a M-Algorithm), [2], which
is the focus of this paper. The K-Best detector guarantees a SNR-
independent fixed-throughput with a performance close to ML. Being
fixed-throughput in nature along with the fact that the breadth-first
approaches are feed-forward detection schemes with no feedback,
makes them especially attractive for VLSI implementation.

II. SYSTEM MODEL

Consider a MIMO system with NT transmit and NR receive
antennas. The equivalent baseband model of the Rayleigh fading
channel between the transmitter and the receiver is described by a
complex-valued NR ×NT channel matrix H . There are two models
for such MIMO system namely the complex equivalent model and the

real equivalent model. In this paper, we consider the complex-domain
framework. However, the proposed scheme can be easily tailored for
the real equivalent model. The complex baseband equivalent model
can be expressed as

Y = HS + V, (1)

where S = [s1, s2, · · · , sNT ]T is the NT -dimensional complex
transmit signal vector, in which each element is independently
drawn from a complex constellation O orthogonally separable M -
QAM schemes with log2M bits per symbol, i.e., |O| = M ),
Y = [y1, y2, · · · , yNR ]T is the NR-dimensional received symbol
vector, and V = [v1, v2, · · · , vNR ]T represents the NR-dimensional
independent identically distributed (i.i.d) circularly symmetric, com-
plex, zero-mean Gaussian noise vector with variance σ2, i.e., vi ∼
Nc(0, σ2). The real equivalent model can also be derived using a
simple decomposition [3]. The objective of the MIMO detection
method is to find the closest lattice point Ŝ for a given received
signal Y , i.e.,

Ŝ = arg min
S∈ONT

‖ Y −HS ‖2 . (2)

The K-Best algorithm is a linear complexity technique that returns
near-optimal solutions to the above problem.

A. K-Best Algorithm

Consider the problem in (2), and let’s denote the QR-
decomposition of the channel matrix as H = QR, where Q is
a unitary matrix of size NR × NT and R is an upper triangular
NT × NT matrix. Applying the nulling operation QH results in
Z = QHY = RS + W , where W = QHV . Since the nulling
matrix is unitary, the noise, W , remains spatially white after nulling.
Exploiting the triangular nature of R, (2) can be expanded as follows.

Ŝ = arg min
S∈ONT

NT∑
i=1

∣∣zi −
NT∑
j=i

Rijsj

∣∣2. (3)

The above problem can be thought of as a tree search problem with
NT levels, where starting from the last row, one symbol is detected
and based on the detected symbol the next symbol in the upper row is
detected and so on. Thus starting from i = NT , (3) can be evaluated
in a recursive manner as follows.

Ti

(
S(i)) = Ti+1

(
S(i+1)) +

∣∣ei

(
S(i))∣∣2 (4)

ei

(
S(i)

)
= zi −

NT∑
j=i

Rijsj = Li

(
S(i)

)−Riisi, (5)

where S(i) = [si si+1 · · · sNT ]T , Ti

(
S(i)

)
is the accumulated partial

Euclidean distance (PED) where TNT +1

(
S(NT +1)

)
= 0,

∣∣ei

(
S(i)

)∣∣2
denotes the distance increment between two successive nodes/levels
in the tree, and Li

(
S(i)

)
= zi −∑NT

j=i+1 Rijsj . Note that the same
equations can be derived for the real-valued equivalent. Based on the
above model, the K-Best algorithm can be described as follows.

1) Initialization: Set one path at level NT + 1 with PED = 0.
2) Expansion: Expand each of the surviving paths from the

previous step to M new possible children in O and calculate
the updated PED for each resulting path.
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3) Sorting: Sort all the existing paths according to their accumu-
lated PEDs and select the best K paths and discard the others.

4) If not at the last level of the tree, go to step 2) otherwise stop.

The path with the lowest PED at the last level of the tree is the
hard decision output of the detector. There are two main computation
cores in the above algorithm that play critical roles in the total
computational complexity, which are discussed in the following.

1) Expansion: The K-Best algorithm enumerates all the possible
children of a parent node, which is M children per parent. Therefore,
there are KM total children to be computed and updated in each
level. This incurs a large computational complexity overhead to the
detectors. The PSK enumeration scheme [4], or its simplified version
for M -QAM systems, [5] are proposed to enumerate the children
more efficiently. Although PSK is more efficient, it does not scale
with the level of the constellation, and has performance loss compared
to true K-Best. Although a simplified version of PSK enumeration is
proposed in [6], still the number of comparisons increases for higher
order constellations.

2) Sorting: In each level of the tree there are KM children.
In general, sorting a list of KM numbers has a complexity of
O(K2M2). Using bubble sorting, which distributes the sorting over
multiple cycles, [2], it takes KM cycles to obtain the sorted list,
which is still complicated to implement. In [7] a distributed sorting
method is proposed based on the Schnorr-Euchner (SE) ordered
search technique [1]. However, the proposed approach requires all the
children of a parent node to be calculated by the metric computation
unit (MCU) and is applicable only for K ≤ √M . Furthermore, it can
not be extended to the complex equivalent model as the distributed
sorting scheme uses the natural ordering of the integer numbers on
the real axis. Moreover, for higher values of K, the proposed single-
cycle merge core becomes increasingly complex resulting in a long
critical path. Therefore, the proposed architecture is not suitable for
higher order modulations like 64-QAM and 256-QAM as the value
of K is large. An improved K-Best approach was also proposed in
[8], where the number of children to be sorted is reduced and the
sorting is also distributed such that for K <

√
M the number of

children to be sorted is reduced from KM to K2 (still complex to
implement). However, there is no simplification when K >

√
M .

III. PROPOSED SCHEME

A. Novel sorting scheme

Let’s consider a NR × NT MIMO system. After the QR-
decomposition, the complex equivalent model of this system can be
thought of as a detection problem in a tree with NT levels and M
children per parent1. The algorithm operates backward from level
NT (corresponding to the last row of R) going up to the first level.
Let’s consider level l of the tree and assume that the set of K-Best
candidates in level l + 1 (denoted by Kl+1) are already determined.
Each node in level l + 1 has M possible children resulting in KM
children in level l, from which K best nodes should be selected.

The key idea of our proposed distributed K-Best scheme is to find
the first child2 of each node in Kl+1. Among these first children the
one with the lowest PED is definitely one of the K-Best candidates
in Kl. That child is selected and is replaced by its next best sibling3.
This process is repeated K times to find the K-Best candidates in
level l (Kl). Thus the proposed algorithm can be described as follows:

Distributed K-Best algorithm in K cycles:

1) Find the K-Best children of level NT (KNT ).
2) For l = NT − 1 : −1 : 1

1The sorting scheme is described for the complex version. However, the
proposed scheme can be easily extended to the real equivalent model. In that
case there are 2NT levels in the tree and

√
M children per parent.

2The first child refers to the child with the lowest local PED.
3The next sibling refers to the child with the next lowest local PED.
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Fig. 1. The proposed scheme for M = 4 and K = 3.

3) Find the first child of all candidates in
Kl+1. Call this set Kl.

4) For k = 1 : K

a) Select the child in Kl with lowest PED.
b) Announce this child as the next K-Best

candidate in level l.
c) Replace it with its next best sibling.

End
End

The proposed scheme is pictorially depicted in Fig. 1 for level l
where M = 4 and K = 3. It basically shows the way that Kl is
derived from Kl+1. This scheme takes exactly K clock cycles to
find the K best nodes in each level independent of the constellation
scheme. Therefore, it is a promising method for the implementation
of the K-Best algorithm in high-order constellation schemes such as
64-QAM and 256-QAM. Note that by increasing the order of the
constellation, the value of K should be increased. However, in the
simulations we show that the value of K scales sub-linearly. Next we
propose an efficient technique to find each node’s first child (Step
3) and the next child (Step 4.c) in the complex domain.

B. On-demand expansion scheme

The reason to use the ordered expansion scheme is to find the first
child and next child of each parent (i) on-demand and (ii) without
visiting all the children. The proposed scheme has two key properties.
First, it efficiently expands the tree with the minimum computational
complexity and secondly it provides a framework to implement the
sorting in a pipelined fashion as was addressed in Section III-A.

Let’s consider the level l of the tree. There are K surviving nodes
from level l + 1, (by Kl+1). For each node in Kl+1, the first child
needs to be found (Step 3). Since the calculation of the first/next
child of all nodes in Kl+1 are performed totally independently,
hereafter, without loss of generality we focus on one node for the
brevity of the the presentation.

1) First Child Selection: Based on the system model in (4), the
first child of a node in Kl+1 (s[1]

l ) is the one that minimizes el

(
S(l)

)
,

i.e.4,

s
[1]
l = arg min

sl∈O

∣∣el

(
S(l))∣∣2 = arg min

sl∈O

∣∣Ll

(
S(l))−Rllsl

∣∣2

= arg min
R(sl)∈Ω

∣∣R[
Ll

(
S(l))]/Rll︸ ︷︷ ︸
uR

l

−R(sl)
∣∣2 (6)

+ arg min
I(sl)∈Ω

∣∣ I[Ll

(
S(l))]/Rll︸ ︷︷ ︸

uI
l

−I(sl)
∣∣2, (7)

4Because Tl+1

(
S(l+1)

)
is in common for all the children of a parent node.
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Fig. 2. The first four best children using complex SE enumeration in a 16-
QAM Constellation scheme: (a) L = {−1+ j}, (b) L = {−1− j,+1+ j},
(c) L = {−1 − j, 1 − j,−3 + j} and (d) L = {−1 + 3j, 1 − j,−3 + j}.

where Ω = {−√M + 1, · · · ,−1, 1, · · · , +
√

M − 1} represents all
the possible values of the real/imaginary part of the constellation
points, and (6)-(7) are derived based on the fact that Rll is a real
number. Considering the square symmetric M-QAM constellation
schemes, there are |Ω| =

√
M possible integers on both real and

imaginary axis. Thus the optimization in (6)-(7) are computationally
cheap to implement as uR

l , and uI
l can be easily rounded to the

nearest integers in Ω to find the optimized value for R(sl) and I(sl),
respectively, as is shown in Fig. 2(a), (ul = uR

l + juI
l ). Since this

process is implemented for all of the K-Best nodes in level l + 1,
the output of Step 3 are the K first children of the parent nodes
in Kl+1.

2) Next Best Child: Upon announcing a child as the next K-Best
candidate (Step 4.b), its next best sibling needs to be determined
(Step 4.c). Recall that the first child corresponds to the sl ∈ O
that minimizes el(S

(l)). By definition, its next best sibling (s[2]
l ) is

the one that has the next smallest incremental distance el(S
(l)), i.e., it

is the (one in) sl ∈ {O−s
[1]
l } that minimizes el(S

(l)). The selection
of the next best sibling can be achieved using our proposed complex
SE enumeration scheme, described briefly as follows.

Let L denote the set of all visited points in the constellation, which
have not yet been announced as the next best sibling. As a new point
is enumerated, it is added to L so initially L = {s[1]

l }. At each step,
the point in L with the lowest PED is announced to be the next
best sibling. That point is removed from L and replaced by one or
two new points that are generated by column or row and column
one-dimensional (real) SE enumerations performed on it. As shown
in Fig. 2, the row and column enumerations enable coverage of the
possible sets of values for R[sl] and I[sl], respectively. These new
point(s) are said to be visited and are then added back into L. Note
that in Fig. 2, the bold crosses represent the visited points while the
bold circled crosses represent the points announced as the next best
siblings. Observe also in Fig. 2(c) that when the removed node has the
same imaginary component as the first child (in this example, +j), two
new row and column nodes are enumerated, whereas in Fig. 2(d), only
one new column node is enumerated. Detailed consideration reveals
that this simple strategy prevents a node from being added into L
more than once. Repeated application of this procedure ensures on-
demand enumeration of the complex constellation points in order of
increasing local PED.

The sequence in Fig. 2 shows the process of finding the first 4-best
children of a particular parent node using the proposed scheme with
the elements of L listed in each stage in the caption.

R

l
u

2

4

1

3

-1-3 +3+1

Fig. 3. The order of the SE row-enumeration for four consecutive enumer-
ations.

One key property of the proposed enumeration scheme is that
because it is based on the SE enumeration, it does not require that the
lattice search space under consideration be bounded. Another feature
is that the best children of each parent are generated one-by-one and
on-demand. Therefore, the complexity of this approach and the search
complexity is independent of the constellation order. This makes our
approach a promising one especially for higher order modulations
like 64-QAM or 256-QAM.

Note that the above complex version can be easily applied to the
real equivalent model. In fact the real domain implementation is a
special case of the above scheme where only a one-dimensional row
SE enumeration on the real numbers is implemented. (Therefore,
there is no need to develop a new approach for the real model.)
Note also that due to the pipelined nature of the proposed scheme,
the minimization in Step 4.a to find the next K-Best candidate
is implemented in one clock cycle as the first children in Step 3
and the next siblings in Step 4.c are sorted as being generated
in a pipelined fashion. The fine-grained VLSI implementation of the
above architecture is an ongoing research project.

IV. COMPLEXITY ANALYSIS

In this section we study the complexity of the proposed approach
and compare it with the other K-Best schemes in the literature. The
focus would be on the detection part excluding the QR-decomposition
and channel preprocessing as they are the common blocks between
all the schemes. Note that some of the K-Best schemes in the
literature consider radius control, as is done in SD, along with
the K-Best implementation, which might result in some complexity
saving for high SNR regimes. Since this technique can apply to any
implementation of K-Best, we do not consider radius control in this
paper and focus purely on the K-Best algorithm itself.

Table I shows the complexity comparison between different
schemes. For comparison metrics, the number of visited children
(called expand in Table I), the required number of clock cycles to
do the sorting (called sort), and the total latency are considered.
The latency shows the number of clock cycles it takes to detect a
symbol vector, S. The sorting for [3], and [7] are calculated with
the assumption that it can be implemented with a linear complexity
using bubble sort, [2]. The value listed in the expand row refers
to the number of visited children or equivalently the number of
Euclidean distances required to be calculated. This directly translates
to more area and power when it comes to the silicon implementation.
However, if all the distance calculations are done in parallel there is
no significant throughput loss. The bit-error-rate (BER) performance
results of our proposed approach is the same as that of in [3], [7],
and [8] as they all implement the true K-Best method. Thus the
major difference between all these schemes including this work is the
way the K-Best method is implemented, which translates to different
throughput and/or hardware complexity. As can be seen, using our
scheme both in real and complex modes, significant complexity
savings are achieved. More specifically, the complex mode is clearly
beneficial as none of the proposed approaches support the complex
mode. The table shows the total number of distance calculations,
sorting period as well as the total latency of the search throughout
the tree in a 4 × 4 MIMO configuration for different constellation
schemes. The numbers in parentheses show the value of K for real
and complex modes in each case, respectively. Note that both our real
and complex mode versions outperform [7] in terms of the latency,
total distance calculation as well as the sorting time. Moreover, our
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scheme is more efficient in the sense that only 2K − 1 children
need to be calculated whereas in [7] the PED of all the children of
all parent nodes should be calculated by MCU. Thus our complex
scheme results in a faster architecture with almost half silicon area
due to the lower depth of the tree and the number of visited children.

The interesting point is that by deploying the complex mode, the
computational complexity is even lower than the real case. This is
because of the fact that the depth of the tree is halved, however, the
value of K resulting in the same performance is not doubled. For
instance, in the case of 4×4 16-QAM, as we will see in the simulation
results, K = 6 in the complex mode gives the same performance
result as K = 5 in the real mode (saving of 30% in total area
and latency). The saving in the sorting is also considerable in 64 and
256-QAM cases (35%, and 30%, respectively). To make this happen,
each parent node can calculate its next best child while the distributed
sorting is performed. This means each parent always knows its current
and the next best child so they are ready to be used by the sorting
core.

Another promising aspect of our approach is that the number of
visited nodes is NOT a function of the constellation order. The fact
that makes this feature possible is the ordered expansion (with on-
demand basis) along with the pipelined sorting scheme proposed in
this paper. Therefore, the complex version is the preferred scheme to
apply although in order to obtain the same performance, the value
of K should increase. It is worth noting that the nice features of the
complex version requires an extra circuitry to implement the above
proposed expansion scheme in the complex domain. However, since
it is implemented in an on-demand basis, and the fact that L does
not populate proportionally, this extra circuitry is negligible. This is
because based on the numerical results, |L| ≤ 7 independent of the
constellation scheme.

V. SIMULATIONS

In theory, the K-Best algorithm might miss the hard-ML point and
might have performance loss as a result. However, for a proper choice
of K, the BER performance of the K-Best method approaches the
optimal case for a reasonable range of signal-to-noise-ratio (SNR)
values. In the following, the simulation results for a single-carrier
4 × 4 MIMO system is presented for both 16-QAM and 64-QAM
schemes. Fig. 4(a) shows the BER performance of a 16-QAM scheme
for different values of K for real and complex equivalent models
as well as the optimal ML result. The SNR value is defined as the
signal-to-noise ratio per transmitted symbol. As shown, for the normal
range of interest (0-23 dB) the performance loss is small. Based on
the figure, the real model implementation outperforms the complex
model for the same value of K (K=5 in this Fig. 4(a)). However, by
increasing the value of K in the complex mode to 6, the performance
result of the complex and real models are almost the same. Increasing
the K from 5 to 6 increases complexity by 20% for the calculation
of the extra children. However, since the number of levels in the
complex mode is 4 vs 8 in the real case, the total complexity saving
is 40% in this case.

Fig. 4(b) shows the BER performance for 64-QAM scheme. Again
for the normal range of interest (0-30 dB) the performance loss is
small. Based on the figure, the performance of the real model with
K = 10 is the same as that of the complex model for K = 11. This
would result in a saving of 45% in the sorting core compared to the
best real model implementation in the literature (see Table. I). The
performance curve for K = 15, and K = 7 are also shown. The loss
associated to K = 7 is considerable whereas in the case of K = 15,
there is 0.4 dB improvement at 30 dB.

VI. CONCLUSIONS

An efficient K-best lattice decoder featuring efficient operation over
infinite complex lattices was proposed. The key idea was a simple
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Fig. 4. K-Best vs ML result for 4 × 4 with different values of K in both
real and complex mode: (a) 16-QAM (b) 64-QAM.

TABLE I
COMPARISON BETWEEN DIFFERENT K-BEST IMPLEMENTATIONS.

[3] [7] [8] This work This work
(real) (real) (real) (real) (complex)

4 × 4 expand 160 160 160 72 44
16QAM sort 160 40 280 37 24
(5,6) latency 240 49 440 40 35
4 × 4 expand 640 640 640 152 84
64QAM sort 640 80 900 74 44
(10,11) latency 720 99 1540 80 65
4 × 4 expand 1920 1920 1920 232 140
256QAM sort 1920 120 2700 113 72
(15,17) latency 2000 149 4620 120 107

means of expanding/visiting the intermediate nodes of the search tree
on-demand, rather than exhaustively, and also directly within the
complex-domain framework. In addition, a new distributed sorting
scheme was developed, which finds the K best candidates in just
K clock cycles. As opposed to the other schemes in the literature,
the proposed scheme can be applied to an infinite lattice, finds the
children on-demand, is scalable both in terms of the number of
transmit antenna and the constellation level, and can be easily applied
to both real and complex mode. The architecture is well-suited for a
pipelined parallel VLSI implementation of a K-best lattice decoder.
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