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ABSTRACT
In this paper, a new approach for decoding real-field codes
based on finding sparse solutions of underdetermined linear
systems is proposed. This algorithm iteratively estimates the
positions and the amplitudes of the sparse errors (or noise im-
pulses) using an Expectation-Maximization (EM) algorithm.
Iterative estimation of amplitudes is done in the Expectation
step (E-step), while iterative estimation of error positions is
done in the Maximization step (M-step). Simulation results
show 1-2 dB improvement over Linear Programming (LP)
which has been previously used for error correction.

Index Terms— Error correcting codes, sparse component
analysis, sparse decomposition, impulsive noise cancelation

1. INTRODUCTION

This paper suggests a novel decoding method to recover the
real-valued messages encoded by a real-valued generator ma-
trix and corrupted by an impulsive noise. The input real-
valued vector s ∈ R

n is encoded with a generator matrix G
which is a m × n matrix (m > n to add redundancy to the
input vector). The channel is a memoryless channel and can
be considered as an impulsive noise added to the encoded sig-
nal. This noise which can be nominated as error in parallelism
with the coding literature, is am×1 vector. The mathematical
model of our problem is:

y = Gs+ e (1)

The main problem is to recover the input vector s from the
vector y and with knowledge of the matrix G. The problem
has the flavor of error correcting problems in the real- field
domain. We may think G as a linear code matrix with its
columns as codewords. No special assumption is made about
the generator matrix G. This general selection of the gener-
ator matrix enables our coding and decoding scheme to have
a ciphering ability, i.e. without knowing the generator matrix,
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the recovery of the input vector is difficult or at least may need
a step to estimate the generator matrix which complicates the
decoding process.
One of the most commonly used error correction tech-

niques in the real-field is to use DFT-based codes, which the
codewords is generated by padding zeros in the DFT domain
as the redundancy of the linear code [1], [2]. The oversam-
pled filter banks can also be considered as error correcting
codes [3]. Moreover, real-valued BCH codes are used as joint
source-channel coding specially in the image transition [4].
As will be seen in Section 2, applying the parity checkma-

trix to (1) leads to an underdetermined system of linear equa-
tions. Solving this linear system of equations for its sparse
solution, are the same as the problem of Sparse Component
Analysis (SCA) which is recently focussed bymany researchers
in the context of Blind Source Separation (BSS) [5], [6], [7].
We use this framework as a tool for the error correction in
real-field codes. In [8] a Linear Programming (LP) method
has been used for decoding the real-field error correcting prob-
lem. It has been also proved that under suitable constraints on
the coding matrix G, the input s is the unique solution to the
�1-minimization problem (min ||y−Gs||1), provided that the
support (where the errors are nonzero) of the vector of errors
e is not too large. This minimization can be implemented by
a linear programming method as a convex optimization prob-
lem.
In this paper, we use a Bernoulli-Gaussian (BG) noise

to consider the background noise in addition to the impulse
noises (or errors). This model of noise with some changes
has been also used in [3]. For the decoding step, we use
an iterative estimation of position and amplitude of errors
which is based on Maximum A Posteriori (MAP) estimation
of these variables. This leads to an iterative Expectation-
Maximization (EM) method.

2. SYSTEMMODEL

Our system model (1) shows the relationship between the in-
put vector (s) and the observed vector (y). The error vec-
tor is considered as an impulsive noise plus Gaussian noise.
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The impulsive noise models the errors due to communication
modulation and demodulation in actual systems and the Gaus-
sian noise models the background noise or quantization noise.
But in our paper, we consider the Bernoulli-Gaussian (BG)
noise to consider the two noises in one variable. So the prob-
ability density of the error variable (ei) is:

p(ei) = pN(0, σ2
off) + (1− p)N(0, σ2

on) (2)

where the probability p is the probability that the value of
noise is not impulsive (we say it is inactive) and it is modeled
by a Gaussian with a small variance (σ2

off ) and the (1 − p) is
the probability of the value of noise being impulsive (we say
it is active) and in this case, it is modeled by a Gaussian dis-
tribution with a large variance (σ2

on � σ2
off ). The probability

(1−p) can be considered as the symbol error probability (pe)
which the symbol here means a real number. This probability
is assumed to be small compared to one. So the probability
p that the noise be inactive can be assumed to be near one
(p ≈ 1).
To recover the input vector s, it is sufficient to recover the

error vector e, because the knowledge of the vector e gives the
value ofGs, and consequently, s, since the matrixG has more
rows than columns and assumed to be full rank [8]. Therefore,
the pseudo inverse of G can recover the input vector s from
overcomplete mixtures of it (x = Gs). This can be written as:

ŝ = G†x = G†(y− e) (3)

To reconstruct the error vector e, we can define a parity check
matrixH (in parallel with coding theory) which annihilatesG
from left, that is HG = 0. To obtain matrix H from G, we
consider the projection operator overG which has the follow-
ing form:

Π⊥G = Im×m −G(G′G)−1G′ (4)

This projection operator is a m ×m matrix that the rows are
orthogonal to each column of G. To omit the redundancy of
the equations, we only choose the m − n rows of this pro-
jection operator for the parity check matrix (H = Π⊥G (1 :
m− n, :)). Then applying this parity check matrix to (1), we
can obtain the syndrome ỹ as:

ỹ = Hy = H(Gs+ e) = HGs+He (5)

Therefore, the parity check equations lead to:

ỹ = He (6)

where this equation is an underdetermined system of linear
equations with m unknowns ei and (m − n) observed vari-
ables ỹi as the syndrome elements. This equation has a sparse
solution e which only a few of its samples are active (impul-
sive) and the remaining are inactive (background small Gaus-
sian noise).
In our approach, for recovering the sparse error vector,

we should find the position of the active errors (impulses) and

also the amplitudes of the errors. To do this, we define an
error activity vector q = (q1, q2, ..., qm)T as:

qi =

{
1 if ei is active (impulsive)
0 if ei is inactive

(7)

3. OUR ITERATIVE EMMETHOD

In our algorithm, we should estimate the m × 1 error vector
e from the syndrome vector ỹ in (6). The main idea in our al-
gorithm is that we iteratively estimate the error activity vector
and the error amplitudes and also the parameters. In [7], we
used a similar method for SCA. Here, we generalize the spiky
model to the BG-model and the parameter estimation is done
iteratively.
In the first step, an error activity vector q̂ is assumed and

the MAP estimation of error vector e is computed. Since q is
known, the vector e has a Gaussian distribution and its MAP
estimation is the same as its Linear Least Square (LLS) esti-
mation given by [9]:

êMAP = E(e|ỹ, q̂) = êLLS = E(eỹ′|q̂)E(ỹỹ′|q̂)−1ỹ (8)

This step can be nominated as Expectation step or Estimation
step (E-step). We use the following equation to consider the
reconstruction error:

ỹ = Hê+ v (9)

where the variable v = H(e − ê) is the reconstruction error
and is assumed to have a Gaussian distribution with a variance
σ2

v . To simplify (8), we first compute the E(eỹ′|q̂) term. This
is equal to:

E(eỹ′|q̂) = E(eê′|q̂)H′ + E(ev̂′|q̂) (10)

The first term E(eê′|q̂) in (10) is equal to E((e − ê)ê′|q̂) +
E(êê′|q̂) = 0 + E(êê′|q̂) due to orthogonality principle of
LLS estimation. The term E(êê′|q̂) is the conditional covari-
ance of the ê and is a diagonal matrix with elements σ2

on for
the active errors and σ2

off for the inactive errors. So this matrix
can be simplified as:

Vq = E(êê′|q̂) = σ2
offI+ (σ2

on − σ2
off)Q̂ (11)

where Q = diag(q) is the diagonal matrix of the error ac-
tivity vector. So we can write E(eỹ′|q̂) = VqH′. After
some similar simplifications, we can compute E(ỹỹ′|q̂) =
σ2

vI+HVqH′. So our E-step of algorithm is:

E-step : êMAP = (VqH′)(σ2
vI+HVqH′)−1ỹ (12)

In the second step, we estimate q based on the known ê and
the syndrome ỹ:

M-step : q̂ = argmax
q

L(q) = log p(q)p(ỹ|q, ê) (13)
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This maximization step should be done over discrete space
with 2m element which is intractable for large m’s. So, an
efficient method for doing this is a necessity. To use efficient
optimizationmethods in continuous space, we convert the dis-
crete variables qi to a continuous variable with a mixture of
two Gaussian with sufficiently small variances around 0, 1.
This approximation can be shown mathematically as:

p(qi) ≈ pN(0, σ2
0) + (1− p)N(1, σ2

0) (14)

Also, to avoid falling into the local maxima of (13), a gradu-
ally decreasing variance of this approximation is used in dif-
ferent iterations. After converting the function in (13), we
should use an optimization method such as steepest descent.
To compute the log posterior which is defined in (13), we
compute the two terms, the prior probability p(q) and the like-
lihood p(ỹ|q, ê) in (15) and (16) respectively.

p(q) =

m∏
i=1

p(qi) ∝

m∏
i=1

[p exp(
−q2

i

2σ2
0

)+(1−p) exp(
−(qi − 1)2

2σ2
0

)]

(15)

p(ỹ|q, ê) = pv(ỹ−Hê) = (2πσ2
v)
−m

2 exp(
−1

2σ2
v

(ỹ−Hê)′(ỹ−Hê))

(16)
So the log posterior is simplified as:

L(q) ∝
m∑

i=1

log(p(qi)) + (
−1

2σ2
v

)(ỹ −Hê)′(ỹ−Hê) (17)

In the appendix, we show that the steepest-ascent algorithm
which is qk+1 = qk +μ

∂L(q)
∂q and it is used for the M-step is:

qk+1 = qk +
μ

σ2
0

g(qk) +
μ

σ2
v

diag(H′)(Hê− ỹ).ê (18)

where g(q) is defined in the appendix. In the successive iter-
ations, we gradually decrease the variance of σ0 in the form
σ

(i)
0 = ασ

(i−1)
0 where α is selected between 0.6 and 1. This

parameter affects the speed of convergence of our algorithm.
Also, the step-size μ should be decreasing, i.e. for smaller
σ’s, smaller μ’s should be applied. This is because for smaller
variances, our function under maximization is more fluctuat-
ing. In fact, for having equal (i.e.proportional) steps of the
steepest-ascent algorithm in (18), the step-size should be in
the form of μ = μ(0)(σ

(i)
0 )2.

The initialization of our algorithm is the minimum �2norm
solution. For the initialization of our parameters, we assume
that the elements of the generator matrix has a uniform dis-
tribution between [-1,1] and also the columns of the matrix is
scaled to have unit norm. We also assume that

∑m−n

j=1 h2
ji ≈

c = (m− n)E(h2
ji). From ỹj =

∑m

i=1 hjiei we can write:

E(ỹ2
j ) = mE(h2

ji)E(e2
i ) (19)
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Fig. 1. The simulation results for various values of noise ra-
tios, wherem = 200, n = 100 and p = .9.

SinceE(e2
i ) = (1−p)σ2

on+pσ2
off ≈ (1−p)σ2

on andE(h2
ji) =

c
m−n

, and from (19) we can estimate σon as:

σ̂on =

√
(m− n)E(ỹ2

j )

mc(1− p̂)
(20)

p̂ =
||q||0
m

(21)

σ̂off =
√
var(einactive) (22)

σ̂v =
√
||ỹ−Hê||2 (23)

4. EXPERIMENTS

This section investigates the result of our EM algorithm to
reconstruct the original signal s from corrupted encoded data
by an impulsive noise (with BG distribution) in comparison
to Linear Programming (LP). The LP decoding algorithmwas
simulated by �1-magic package [10].
The sources are assumed to be uniform in [-1,1]. The sizes

are assumed to be m = 200 and n = 100. The elements of
the generator matrixG is generated by uniform distribution in
[-1,1]. Then the columns of this matrix are normalized to have
unit norm. The error vector e is generated by a BG distribu-
tion described in Section 2 with parameters σon = E(|Gs|),
σoff = σon

40 and p = 0.9. The experiments was repeated
100 times for new random input signals, generator matrices
and error vectors. The measure of performance is the SNR
between the input signal vector s and recovered input signal
vector ŝ defined as SNR = 10 log ||s||2

||s−ŝ||2 . In our experiment,
various strengths of background noise were examined. We
define the noise ratio as Re = σon

σoff

. By this definition, and
for a fixed σon, we can select σoff = σon

Re
. The results for the

various noise ratios are depicted in Fig.1. The results show
1-2 dB improvement of our algorithm in comparison to LP
method.
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Although, the CPU time is not an exact measure of com-
plexity, it can give us a rough estimation of it, and we compare
our algorithm with LP using this measure. Our simulations
were performed in MATLAB 7.0 environment using an Intel
2.40 GHz processor with 512 MB of RAM and under Mi-
crosoft Windows XP operating system. The simulation time
of 100 experiments is computed for each algorithm. This is
57.7 seconds for the LP decoding algorithm, while it is 36.8
seconds for our EM algorithm.

5. CONCLUSIONS

In this paper, we introduced a new EM algorithm for decod-
ing real-field codes in presence of impulsive noise (or errors).
This algorithm iteratively estimates the positions and ampli-
tudes of the errors. Our simulations show that our EM algo-
rithm is slightly (1-2 dB) better than the LP method when the
background noise is present. Moreover, it is slightly faster
than the LP method.

6. APPENDIX

From (17), we have:

∂L(q)

∂q
∝

∂

∂q

m∑
i=1

log(p(qi))−
1

2σ2
v

∂

∂q
(ỹ−Hê)′(ỹ−Hê)

(24)
we define g(q) = −σ2

0
∂

∂q

∑m

i=1 log(p(qi)) and n(q) = (ỹ−
Hê)′(ỹ−Hê). With these definitions the scalar function g(qi)
and the n(q) (with omitting the constant terms) can be com-
puted as:

g(qi) =
pqi exp(

−q2

i

2σ2

0

) + (1− p)(qi − 1) exp(−(qi−1)2

2σ2

0

)

p exp(
−q2

i

2σ2

0

) + (1− p) exp(−(qi−1)2

2σ2

0

)

(25)
n(q) = −2ỹ′Hê+ ê′H′Hê (26)

with definitionsC � H′H andn1(q) � −2ỹ′Hê andn2(q) �

ê′H′Hê and with approximation ê � Qr̂ we can write:

∂n1(q)

∂q
= diag(−2ỹ′H).̂r (27)

If we defineW � Qr̂ (m× 1 vector) then n2(q) = W′CW

and so we have:

∂n2(q)

∂qi

=

m∑
j=1

∂n2(q)

∂Wj

∂Wj

∂qi

(28)

From the vector derivatives, we have ∂n2(q)
∂W

= 2CW = d.
Also from the definition of W we have ∂Wj

∂qi
= r̂iδij . So

(28) is converted to ∂n2(q)
∂qi

=
∑m

j=1 dj r̂iδij = r̂idi. Conse-
quently, the vector form of (28) is equal to:

∂n2(q)

∂q
= diag(d).r̂ (29)

From (27) and (29) andn(q) = n1(q)+n2(q) and definitions
of vectors d andC, we can write:

∂n(q)

∂q
= 2diag(H′HQr̂−H′ỹ).̂r (30)

Finally, replacing ê � Qr̂ in (30) and then in (24) with some
manipulation leads to the steepest-ascent iteration in (18).
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