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ABSTRACT
Substantial gains are realizable through basestation coopera-

tion during assignment of transmission powers to users. While

binary power assignment is optimal for sum capacity in a two-

cell system, it does not hold true in general for multi-cell sys-

tems. In this paper, we study an optimal power allocation for

sum capacity in a three-cell system. The proposed branching

algorithm is of linear computational complexity, and provides

a power assignment which achieves a sum capacity arbitrarily

close to the theoretical value. This result provides the impetus

for next generation wireless systems to enable basestations to

perform joint power assignment across multiple cells.

Index Terms— Information rates, Power control, Bases-

tation

1. INTRODUCTION

The paradigm of basestation (BS) cooperation during resource

allocation is an attractive proposition for improving the over-

all system capacity. Cooperative schemes can be deployed

either in a centralized manner at a Radio Network Controller

(RNC) or in a distributed manner with peer-to-peer commu-

nication among BSs to optimize metrics such as the overall

sum throughput, per user outage probability, per user utility

based functions, or a combination thereof.

For a slotted two-cell system with transmit power con-

straints, [1, 2] shows that the sum capacity achieving opti-

mal power allocation corresponds to binary power control,

wherein each BS transmits to its user with either maximum or

zero power. Additionally, the optimality loss incurred by ex-

tending binary power control scheme to a multi-cell scenario

is shown to be negligible in certain propagation environments.

The sum capacity of a three-cell system, however, is gener-

ally not achievable by the binary power control scheme. In

this paper, we study the optimal power assignment to achieve

sum capacity in a slotted three-cell system, assuming coop-

erative BSs. It is of theoretical interest, as well as practical

importance to design joint BS power assignment schemes,

which approach the theoretical sum capacity, irrespective of

the propagation scenarios.

Our key contribution is a linear complexity branching al-

gorithm that produces a power assignment to scheduled users

in a slotted three-cell system, such that the resulting sum ca-

pacity can be arbitrarily close to the optimum sum capac-

ity. The term “slot” refers to separating users within each

cell, through one or more dimensions in either temporal, fre-

quency, or orthogonal codes. Due to inter-cell interference,

the sum capacity of a three-cell system, in general, is non-

convex in the set of feasible power allocation vectors. The

non-convex master optimization problem is divided into mul-

tiple subprograms with enumerable local optima. We specify

an exit condition, which depends on a relative error target on

the maximum difference between the computed and the theo-

retical sum capacity. Thus, the proposed branching algorithm

guarantees that the computed sum capacity is arbitrarily close

to the theoretical limit. Furthermore, the number of subpro-

grams required to achieve the error threshold is shown to be a

function of the channel gains.

2. THREE CELL SYSTEM MODEL

Consider a slotted three-cell system, in which each cell sched-

ules a mobile for transmission during a slot. The BSs ex-

change information regarding the channel gains from each

mobile through a central RNC (Figure 1). Denote Pmax as

the maximum transmit power per BS, and Gi,j as the channel

gain from mobile j to BS i, which is the composite chan-

nel gain including the effects of path loss, lognormal shadow-

ing, and fast fading. Moreover, denote σ2 as the variance of

AWGN. For national simplicity, we use a normalized channel

gain gij = GijPmax

σ2 , 1 ≤ i, j ≤ 3 throughout this paper.

For a given power assignment P1,P2 and P3 to the sched-

uled mobile per cell, the achievable sum rate in the reverse

link can be expressed as

R(P1, P2, P3) � log2

3∏
i=1

(1 + SINRi)

where, SINRi � Pigii

1 +
∑

j �=i Pjgij
∀ 1 ≤ i ≤ 3
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Fig. 1. Cooperative power assignment from BS to mobiles
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Fig. 2. Feasible region of power assignments for M(P).

The BSs perform joint power allocation by solving an opti-

mization problem, which involves maximizing the achievable

sum rate, subject to a maximum transmit power constraint per

mobile. The master optimization problem M(P) can be for-

mulated as,

Popt = argmax
(P1,P2,P3)∈P

R(P1, P2, P3) (1)

P = {(P1, P2, P3) : 0 ≤ P1, P2, P3 ≤ 1}
Since the objective function is continuous over the compact

feasible region P , M(P) has a solution, by the Maximum-
Minimum theorem [3]. A few assumptions are made with re-

spect to the optimization problem in (1): (a) the channel gains

are constant over one slot; (b) each BS has global knowledge

of the channel gains; (c) each user employs Gaussian dis-

tributed signaling; and (d) each user is capable of choosing

a continuum of rates and powers.

Note that due to inter-cell interference, M(P) is non-

convex, which makes it difficult to solve. In this paper, we

propose to branch M(P) into a finite number of subprograms,

each of which is easier to solve. In the following, we first state

a proposition, according to the results in [1].

Proposition 1 The solution to M(P) lies on the boundary

∂P of the constraint set P .

Proof For any α > 1, R(αP1, αP2, αP3) > R(P1, P2, P3).
This implies that given any feasible power vector in the in-

terior of the cubic feasible region shown in Figure 2, it can

be linearly scaled to lie on the boundary of P for a strictly

higher sum rate. Consequently, the power allocation achiev-

ing the highest sum rate lies on either the BACD or BDFE
or AGEB face of P . �

The consequence of Proposition 1 is that the optimal power

allocation consists of at least one mobile, which is transmit-
ting with maximum power. Binary power control [1] corre-

sponds to assigning the power allocation from the vertex of

the cube that achieves the highest sum rate; however, this may

not be the optimal power assignment, as evidenced by the fol-

lowing example:

G = 105 ·
⎛
⎝ 0.034478 0.000011 0.000079

0.006218 0.044339 0.023319
0.000073 0.000002 2.443243

⎞
⎠
(2)

Popt =
[

0.39 1 0.2
]

Pvert =
[

1 1 1
]

R(Popt) = 24.9342 b/s/hz > R(Pvert) = 24.5670 b/s/hz

The following section presents a linear complexity algorithm,

which solves a series of subprograms per face of P resulting

in a solution arbitrarily close to R(Popt). This algorithm is

inspired by the branch-and-bound algorithm in [4] for maxi-

mizing products of fractional functions.

3. OPTIMAL POWER ALLOCATION: A
BRANCHING ALGORITHM

Since at least one mobile in the optimal vector Popt transmits

with maximum power, we propose to branch M(P) into 3
subproblems. Each subproblem consists of allocating maxi-

mum power to the selected user in one cell, and solving for

the optimal power allocation for the transmitting users in the

remaining cells. Stated otherwise, this is equivalent to find-

ing the maximum rate over the faces BACD, BDFE and

AGEB of P . In addition, each subproblem is solved through

a series of subprograms, each of which solves an optimization

problem to maximize the sum capacity of a two-cell system

for a fixed SINR (rate) in the third cell.

To solve for the highest sum rate over face BACD of

P , define S12(η) as the subprogram with the following con-

ditions: (a) user in cell 3 transmits with maximum power,

and (b) SINR3 satisfies 1 + SINR3 = η. Note that η ∈
[ηmin, ηmax], where ηmax = 1+g33 corresponds to the high-

est achievable SINR3 by setting P1 = P2 = 0, while η =
ηmin = 1 + g33

1+g31+g32
corresponds to the lowest achievable

SINR3, obtained by setting P1 = P2 = 1. It is shown later in

this paper that the highest sum throughput on face BACD of

P can be achieved by solving S12(ηi) for “sufficiently” many

ηi ∈ [ηmin, ηmax].
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Fig. 3. Solving the subproblem S12(η) over a face of P

Mathematically, the subprogram S12(η) is expressed as:

(P̂1, P̂2) = max
(P1,P2)∈P12(η)

Q(P1, P2) (3)

Q(P1, P2) � (1 + SINR1) · (1 + SINR2)

P12(η) = {(P1, P2) : 0 ≤ P1, P2 ≤ 1,
P1

A(η)
+

P2

B(η)
= 1}

SINR3 = η − 1, A(η) =
1 + g33 − η

g31(η − 1)
,
A(η)
B(η)

=
g32

g31

For a fixed subprogram, Lemma 1 derives the optimizing power

allocation to (3).

Lemma 1 The optimizing solution (P ∗
1 (η), P ∗

2 (η)) of S12(η)
lies in the set of feasible points in

Popt(η) = {(A(η), 0), (0, B(η)), (1, B(η) − g31

g32
),

(A(η) − g32

g31
, 1)}

⋃
{(P1, B(η) − g31

g32
P1) :

P 2
1 (X2X4(X1 + X3) − X1X3(X2 − X4))+

2P1(X1X2 + X3X4) + (X1 + X3 + X2 − X4) = 0}
(4)

where X1 � g11−g12g31/g32
1+g13+g12B(η) , X2 � g21−g22g31/g32

1+g23+g22B(η) , X3 �
g12g31/g32

1+g13+g12B(η) & X4 � g21
1+g23

.

Proof For a given η, the solution to (3) can be obtained from

the following cases:

1. Local Optima in P12(η): Using P2 = B(η) − g31
g32

P1,

(3) is reexpressed as:

Q(P1) =
(1 + g13 + g12B(η)) + P1(g11 − g12g31/g32)

(1 + g13 + g12B(η)) − P1g12g31/g32
∗

(1 + g23 + g22B(η)) + P1(g21 − g22g31/g32)
(1 + g23 + g21P1)

(5)

Therefore, S12(η) is equivalently represented by the optimiza-

tion problem,

(P ∗
1 , P ∗

2 ) = argmax
(P1,P2)∈P12(η)

(1 + P1X1)(1 + P1X2)
(1 − P1X3)(1 + P1X4)

(6)

Local optima to (6) are obtained by finding the feasible solu-

tions to Q′(P1) = 0, resulting in,

P 2
1 (X2X4(X1 + X3) − X1X3(X2 − X4))+

2P1(X1X2 + X3X4) + (X1 + X3 + X2 − X4) = 0 (7)

Note, however, that the solution to (7) is not guaranteed to be

feasible in P12(η).
2. If the local optima found in the above step are either a

minima or infeasible, Q(P1) is quasiconvex on [0, 1]. Thus,

the maxima lies at the endpoints given by the set

{(A(ηi), 0), (0, B(ηi)), (1, B(ηi)− g31

g32
), (A(ηi)− g32

g32
, 1)}.

Combining 1 and 2 completes the proof. �

By varying η, a family of subprograms S12(ηi) is ob-

tained, where ηi ∈ [ηmin, ηmax], over linear constraints on

parallel lines as shown in Figure 3. The subproblem char-

acterizing the highest sum rate over the interior of the face

BACD equals R(η∗), where η∗ � argmaxη∈[ηmin,ηmax] S12(η).
By symmetry, identical subprograms S23(ηi) and S31(ηi) are

solved over faces BDFE and AGEB, respectively.

The preceding observations lead to the algorithm presented

in this work. Our optimal power allocation algorithm M̂(P)
consists of two parts. In the first part, a subprogram Svert(P)
computes the highest sum rate over the vertices of P (ex-

cluding the origin). Next, using Lemma 1, the subprograms

S12(ηi), S23(ηi) and S31(ηi) are solved over finitely many

ηi ∈ [ηmin, ηmax].
To characterize the difference between the estimated sum

rate obtained by the proposed branching algorithm and the

theoretical optimal sum rate, the following Lemma states the

number of required subprograms per face to achieve arbitrar-

ily close to the theoretical sum capacity.

Lemma 2 Let Popt solve M(P), P(η∗) be the terminating
solution to M̂(P), and Pvert solve the vertex subprogram
Svert(P). Given a target relative error ε ≥ |R(Popt)−R(P(η∗))|

R(Pvert)
,

M̂(P) requires a minimum number of intervals per face given
as:

ni ≥ max ‖∇PR(P)‖2

2εR(Pvert)
∗

max

(
g31 + g32√
g2
31 + g2

32

,
g21 + g23√
g2
21 + g2

23

,
g12 + g13√
g2
12 + g2

13

)
(8)

Proof If the optimal power allocation Popt lies on the ver-

tices of P , then M̂(P) computes the optimal power alloca-

tion after solving Svert(P). If not, the optimal allocation

should lie on one of the faces of P . WLOG, say Popt lies

on the BACD face of P (see Figure 4), and let η = η∗ corre-

spond to solution of S12(P). The magnitude of error between
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Fig. 4. Solving the subproblem S12(η) over a face of P

R(P(η∗)) and the highest sum rate R(Popt) can be bounded

as,

|R(Popt) − R(P(η∗))| ≤ |R(Popt) − R(P(η))| (9)

= |(Popt − P (η))′∇PR(P)| (10)

≤ ‖(Popt − P (η))‖2‖∇PR(P)‖2

(11)

≤ 1
2ni

g31 + g32√
g2
31 + g2

32

max ‖∇PR(P)‖2

(12)

Choosing P(η) to be the point closest to Popt, Equation (9)

follows, since R(P(η)) ≤ R(P(η∗)) ≤ R(Popt). Next,

choosing P = λP(η) + (1 − λ)Popt where λ ∈ [0, 1], the

mean value theorem guarantees that (10) holds. (11) follows

from the Cauchy-Schwarz inequality. Finally, (12) follows

since ‖(Popt − P (η))‖2 is less than half the spacing between

two consecutive lines. �

Computing the three-cell capacity by solving the vertex sub-

program incurs the smallest computational cost, but only pro-

vides a suboptimal solution. Lemma 2 implies that the pro-

posed algorithm M̂(P) approaches the sum capacity while

incurring a linear complexity O(max(n1, n2, n3)). In con-

trast, the empirical capacity calculation has a complexity of

O(n2), where n represents the number of points in each di-

mension.

4. RESULTS

Table 2 shows the ergodic sum capacity, corresponding to the

system parameters in Table 1. The setup consists of three

neighboring sectors in adjacent cells, whose BSs perform the

proposed optimal power allocation in each slot. The results

were obtained after averaging over 250 different mobile drops

in both macro-cell and micro-cell scenarios, with 2000 trials

per drop. A Proportional Fair (PF) scheduler was used to se-

lect the transmitting mobile in each cell per slot. The pro-

posed algorithm M̂(P) was used to obtain the optimal power

Table 1. System Parameters

Parameter Value
Radius (Micro, Macrocell) 0.5, 1 km

Pmax 21 dBm

Mobile Speed 60 kmph

Path loss (dB) 127.6 + 37.6 log10(dkm)
LN Shadowing (σdB) 8 dB

Antenna Pattern −min (( θ
70 )2, 20 dB)

Table 2. Results (m: Microcell, M: Macrocell)
Users Vertex Empirical Estimated % Gain
15 (m) 13.2775 13.3776 13.3779 0.76
15 (M) 8.7561 8.7651 8.7651 0.1
25 (m) 13.5183 13.6104 13.6106 0.68
25 (M) 9.1306 9.1423 9.1423 0.13

allocation after solving 100 subprograms over each face of

P . The empirical capacity was derived by finding the highest

sum rate over 100 distinct pairs of points on the 3 candidate

faces.

The closeness between the empirical and estimated ca-

pacity shows the near optimality of the proposed algorithm.

Moreover, the sum capacity computed over the vertices of P
is close to the sum capacity achieved by the proposed algo-

rithm. Although this suggests that binary power allocation

achieves near optimal sum capacity in a three-cell system, our

proposed algorithm enables achieving the optimal power as-

signment, while maintaining linear complexity.
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