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ABSTRACT

For comprehensive convex compact positive utility sets, the
Nash bargaining solution (NBS) is obtained by maximizing a
product of utilities, a strategy which is also known as “propor-
tional fairness”. However, the standard assumption of convexity
may not be fulfilled. This is especially true for wireless commu-
nication systems, where interference and adaptive techniques
can lead to complicated non-convex utility sets (e.g. the 2-user
SIR region with linear receivers). In this paper, we show that
the Nash bargaining framework can be extended to certain non-
convex utility sets, whose logarithmic transformation is strictly
convex comprehensive. As application examples, we consider
feasible sets of signal-to-interference ratios (SIR), based on
axiomatic log-convex interference functions. The resulting SIR
region is known to be log-convex. However, strict log-convexity
and compactness is required here. We derive conditions under
which this is fulfilled. In this case, there is a single-valued Nash
bargaining solution, which is equivalent to the proportionally
fair operating point. The results are shown for a total power
constraint, as well as for individual power constraints.
Index Terms— resource allocation, SIR feasible set, cooperative game

theory, Nash bargaining

1 INTRODUCTION
Wireless communication systems use cooperative resource alloca-

tion strategies in order to efficiently exploit the available power and
bandwidth. Cooperation is often facilitated by centralized architec-
tures, like cellular systems (e.g. UMTS-HSDPA). But cooperation
can also be useful between decentralized system components. For
example, partial cooperation between multiple base stations is
currently being discussed in the 3GPP-LTE standardization.
By letting users cooperate, they can efficiently manage or even

combat interference. Consider a wireless system, withK users from
an index set K = {1, 2, . . . , K}, where K ≥ 2. If the users are
coupled by interference, then there is a general trade-off between
the users’ utilities u = [u1, . . . , uK ]T chosen from the utility set U .
In this paper, we focus on utility sets with the following properties:

• U is a non-empty compact subset of R
K
++, where R++ is the

set of positive reals. That is, we consider a communication
scenario where all users participate (have non-zero utility).

• U is comprehensive. That is, for all u ∈ U and u′ ∈ R
K
++,

the component-wise inequality u′ ≤ u implies u′ ∈ U . This
may be interpreted as free disposability of utility [1].

Throughout the paper, all vector inequalities (e.g. u′ ≤ u) are
component-wise. By “compact” we mean relatively compact in

R
K
++. The class of all sets with the above properties is denoted
by DK .
A fundamental problem is to find a suitable operation point or

solution outcome from the boundary of the utility set U . Various
strategies exist and were investigated within the framework of
bargaining game theory [1]. The users can cooperate to find
an unanimous agreement on some solution outcome ϕ(U). This
outcome is generally better than the Nash equilibrium, which results
from a non-cooperative approach. The gain from cooperation can
be substantial (see e.g. [2]).

1.1 The Conventional Nash Bargaining Solution (NBS)

We begin by briefly reviewing the Nash Bargaining Solution
(NBS), which was introduced by Nash [3] and extended later (see
e.g. [1] and the references therein). The NBS in its standard form
requires that the utility set U is convex. An extension to certain
non-convex sets will be derived later in Section 2.

Definition 1. Consider a convex set U ∈ DK . The NBS is the
unique (single-valued) solution that fulfills the following axioms.

• Weak Pareto Optimality (WPO). The users should not be able
to collectively improve upon the solution outcome, i.e.,

ϕ(U) ∈ {u ∈ U : there is no u
′ ∈ U with u

′ > u} .

• Symmetry (SYM). If U is symmetric, then the outcome does
only depend on the employed strategies and not on the iden-
tities of the users, i.e., ϕ1(U) = · · · = ϕK(U). This does not
mean that the game is necessarily symmetric, but rather that
all users have the same priorities.

• Independence of Irrelevant Alternatives (IIA). If the feasible
set shrinks but the solution outcome remains feasible, then the
solution outcome of the smaller set should be the same, i.e.,

ϕ(U) ∈ U ′, with U ′ ⊆ U =⇒ ϕ(U ′) = ϕ(U) .

• Scale Transformation Covariance (STC). The optimization
strategy is invariant with respect to a component-wise scaling
of the region. That is, for every U ∈ DK , and all a, b ∈ R

K

with a > 0 and (a ◦ U + b) ∈ DK , where ‘◦’ means
component-wise multiplication, we have

ϕ(a ◦ U + b) = a ◦ ϕ(U) + b .

In the game-theoretical literature (e.g. [1]), the Nash bargaining
framework usually contains a disagreement point, which ensures a
solution in case that the players are unable to reach a unanimous
agreement. However, this is not required for the problem under
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consideration. The existence of a solution is always guaranteed by
the assumed properties of the utility set.
For convex sets U ∈ DK , the single-valued NBS fulfilling these

four axioms is obtained by maximizing the product of utilities

max
u∈U

Y
k∈K

uk . (1)

It was observed in [4] that this strategy is equivalent to propor-
tional fairness (PF). Since log max

Q
k

uk = max log
Q

k
uk =

max
P

k
log uk, the optimum (1) can be found by solving

max
u∈U

X
k∈K

log uk . (2)

Proportionally fair resource allocation (2) was originally introduced
in the context of stability and fairness of rate control algorithms for
communication networks [4] . The proportional fair operating point
û is the one, at which the difference to any other utility vector u ∈
U measured in the aggregated proportional change

P
k
(uk−ûk)/ûk

is non-positive. This relates the NBS to a known fairness criterion
.

1.2 Wireless Systems and SIR Regions
The standard assumption of convexity need not be fulfilled

in practice. This is particularly true for wireless systems, where
interference and adaptive communication techniques can lead to
utility sets with a complicated structure.
An example is the signal-to-interference(-plus-noise) ratio (SIR).

The SIR is an important measure for the user performance in a
wireless system. Many other measures can be directly related to
the SIR (e.g. bit error rate, capacity, . . . ).
Consider K users, with transmit powers p = [p1, . . . , pK ]T . The

noise power at each receiver is σ2. Hence, the SIR at each receiver
depends on the extended power vector

p =
ˆ

p

σ2

˜
= [p1, . . . , pK , σ2]T . (3)

The resulting SIR of user k is SIRk(p) = pk/Ik(p), where Ik

is the interference (plus noise) as a function of p. The set of all
possible transmit power vectors is denoted by P (specified later in
Section 3).
In order to model interference, we follow the axiomatic approach

proposed in [5], [6].

Definition 2. We say that I : R+ �→ R+ is an interference function
if it fulfills the axioms:

A1 (non-negativity) I(p) ≥ 0 for all p > 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R+

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′.

This framework A1–A3 differs slightly from the original notion
of standard interference functions introduced in [5], where “scala-
bility” was required instead of “scale invariance”. The reason is the
explicit modeling of the noise in (3). Both models are equivalent if
we require additional strict monotonicity with respect to the noise
component, i.e.,

I(p) > I(p′) if p
K+1

> p′

K+1
and p ≥ p

′ . (4)

With (4) and the assumption of constant noise, the function I is
standard with respect to the variable vector p.
However, in this paper we use the framework A1–A3, which

has the advantage of being more general: Its applicability is not

restricted to a particular power control problem, but it can also be
used for the analysis of utility sets.
As an example, consider the SIR feasible region, which is defined

as the sub-level set

S(P) = {γ ∈ R
K
++ : C(γ ,P) ≤ 1} , (5)

where γ is a vector of SIR values, whose feasibility is determined
by the min-max optimum.

C(γ,P) = inf
p∈P

max
k∈K

γkIk(p)

pk

. (6)

The structure of the SIR set S(P) depends on the properties of
C(γ,P), which in turn depends on the properties of the underlying
interference functions I1, . . . , IK , as well as on the chosen power
set P . It can be observed that C(γ ,P) itself is an “interference
function” fulfilling A1–A3. Moreover, sub-level sets of convex
functions are convex, thus S(P) is a closed convex set from R

K
++ if

C(γ,P) is convex. However, convexity of C(γ ,P) does generally
not hold, so SIR regions (5) are typically non-convex.

1.3 Problem Formulation and Contributions
A drawback of the classical Nash bargaining framework is the

requirement of convexity. For every compact convex set from DK ,
the product maximizer (1) is the single-valued NBS characterized by
axioms WPO, SYM, IIA, STC. However, this convexity assump-
tion need not be fulfilled, especially not for interference-coupled
wireless systems (see e.g. the example in Section 1.2).
In this paper, we will show that the conventional NBS framework

can be extended to certain “log-convex” utility sets. Our approach
is based on a change of variable qk = log uk , which is a common
technique for exploiting “hidden convexity” (see e.g. [7]–[10]). In
Section 2, it will be shown that the product maximizer (1) is the
single-valued NBS if the set of transformed utilities qk is a strictly
convex compact comprehensive set. This result extends the class
of bargaining games for which the classical results summarized in
Section 1.1 hold, and for which NBS is equivalent to proportional
fairness.

2 NASH BARGAINING FOR LOG-CONVEX UTILITY SETS
Consider the bijective continuous mapping

Log(U) = {q = log(u) : u ∈ U} , (7)

where log(u) = [log u1, . . . , log uK ]T .

Definition 3. By ST c we denote the class of all compact compre-
hensive utility sets U ⊂ R

K
++, such that Log(U) is a strictly convex

set in R
K . In the following, such sets are sometimes referred to as

strictly log-convex.

In this section, it will be shown that for any U ∈ ST c, the
product maximizer (1) is the single-valued NBS characterized by
axioms WPO, SYM, IIA, STC.
By Log(ST c) we denote the class of all sets Log(U) such

that U ∈ ST c. A set Q belongs to Log(ST c) if and only if it
is strictly convex, comprehensive, and compact. Compactness and
comprehensiveness of U are preserved by the log-transformation.
That is, U ⊂ R

K
++ is compact comprehensive if and only if

Log(U) ⊂ R
K is compact comprehensive.

Strict convexity of the transformed set plays an important role
for the proof of uniqueness. We also exploit that the axioms
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WPO, SYM, IIA, STC have direct equivalences in Log(U). This is
straightforward for axioms WPO, SYM, IIA, which are not affected
by the logarithmic transformation. That is, weak Pareto optimality
(WPO) in the utility set U corresponds directly to weak Pareto
optimality in the set Log(U). The same holds for Symmetry (SYM)
and Independence of Irrelevant Alternatives (IIA). We will denote
the axioms associated with the transformed set by WPOQ, SYMQ,
and IIAQ.
Scale transformation covariance (STC) in the utility set U ∈

ST c also has a direct correspondence for the transformed set Q =
Log(U). Consider an arbitrary translation q̃ ∈ R

K , leading to a
translated set Q(q̃), defined as

Q(q̃) = {q ∈ R
K : ∃q0 ∈ Q with q = q0 + q̃} .

Then, the transformed Nash bargaining solution in the set Q is

ϕQ

`
Q(q̃)

´
= ϕQ

`
Q

´
+ q̃ . (8)

We will refer to property (8) as STCQ.
It is now shown that the transformed axioms are associated with

a unique solution outcome ϕQ in the transformed set.

Theorem 1. For an arbitrary set U ∈ ST c, the solution outcome
ϕQ in the transformed set Q = Log(U) fulfills WPOQ, SYMQ,
STCQ, IIAQ if and only if

ϕQ

`
Log(U)

´
= arg max

q∈Log(U)

X
k∈K

qk . (9)

A sketch of the proof is as follows. Given the properties of the
region U ∈ ST c and the image set Log(U), it is clear that the
solution (9) fulfills the axioms WPOQ, SYMQ, STCQ, IIAQ.
It remains to show the converse. Consider a bargaining strategy

on the transformed set Q = Log(U), that fulfills the axioms
WPOQ, SYMQ, STCQ, IIAQ. Then, these axioms are fulfilled by
a unique solution, which is the optimizer of (9). To show this,
consider the set

Q1 = {q ∈ R
K :

X
k

qk ≤ K} .

Because of the STCQ property (8), we know that the strategy is
invariant with respect to a translation of the region. So, without
loss of generality we can assume Q ⊆ Q1, and

q̂ = [1, . . . , 1]T = arg max
q∈Q

X
k∈K

qk .

Since Q is upper-bounded, there is a q̃ ∈ R
K such that q̃ ≥ q, for

all q ∈ Q. Thus, Q is a sub-set of the set

Q̃1 = {q ∈ Q1 : q ≤ q̃} . (10)

The set Q̃1 is symmetric and strictly convex. Now, let Q̃ be the
smallest symmetric and strictly convex region that fulfills Q̃1 ⊇
Q̃ ⊇ Q. Since Q̃1 is upper-bounded, the set Q̃ is compact. It is
also strictly convex comprehensive, so it is contained in Log(ST c).
Because of property SYMQ, it follows that

ϕQ(Q̃) = q̂ = [1, . . . , 1]T .

Since
P

k
qk = K is a supporting hyperplane for Q̃, we have

ϕQ(Q̃) = arg max
q∈Q̃

P
k∈K

qk . Now, Q ⊆ Q̃ and q̂ ∈ Q.
Because of property IIAQ we have

ϕQ(Q) = ϕQ(Q̃) = [1, . . . , 1]T = arg max
q∈Q

X
k∈K

qk . (11)

Thus, for all U ∈ ST c the optimization (11) in the transformed
domain Q = Log(U) leads to the unique optimum (9). Because of
the one-to-one logarithmic mapping between the sets Q and U , we
have the following result

Corollary 1. Let U ∈ ST c. Then WPO, SYM, STC, IIA is fulfilled
by a unique solution outcome ϕ(U), which is the maximizer

ϕ(U) = arg max
u∈U

Y
k∈K

(uk) . (12)

3 NASH BARGAINING OVER SIR FEASIBLE SETS
We will now apply the results to the non-convex SIR region

S(P), as defined by (5).
If the interference functions are linear, e.g. I(p) = vT p, with

coupling coefficients v ≥ 0, and with an unconstrained power
set P = R

K
++, then the resulting SIR region S(P) is known to

be log-convex. This was shown in [7], and extended in [8], [9].
Recent work [11] provides conditions under which the transformed
set is strictly convex, as required by Nash bargaining. However,
all these results are restricted to linear interference functions. In
this paper we consider the more general interference model A1–A3
(see Definition 2). For this model, strict convexity is generally not
fulfilled.
The axiomatic framework A1–A3 was studied in [12], where log-

convexity of certain SIR sets was shown for log-convex interference
functions (as defined in the next section), which includes the linear
function as a special case. However, this result neither includes
power constraints, nor was strict convexity shown. However, strict-
ness of the logarithmic SIR set is needed for the extended Nash
bargaining theory from Section 2 to be applicable.
In the next section we extend the results [12] by deriving

conditions under which certain power-constrained SIR regions are
strictly log-convex compact comprehensive.

3.1 Log-Convex Interference Functions
Having introduced general interference functions in Section 1.2,

we will now focus on the important sub-class of log-convex inter-
ference functions. For explanation, consider f(s) := I(exp{s}).
The function f : R

K �→ R+ is said to be log-convex on R
K if

log f is convex, or equivalently [13]

f
`
(1 − λ)ŝ + λš

´
≤ f(ŝ)1−λf(š)λ, ∀λ ∈ (0, 1), ŝ, š ∈ R

K .

Definition 4. We say that I : R
K
+ �→ R+ is a log-convex interfer-

ence function if A1–A3 are fulfilled and in addition I(exp{s}) is
log-convex on R

K .

Notice that the log-convexity property in Definition 4 is based on
a change of variable p = exp{s} (component-wise exponential).
Such a technique was already used by Sung [7] in the context of
linear interference functions, and later in [8]–[10].
Some examples of log-convex interference functions are:

Example 1. The linear function

Ik(p) = p
T
vk, k ∈ K , (13)

where vk ∈ R
K
+ is a vector of interference coupling coefficients.

Example 2. The coefficients v can adapt to the current interference
situation. An example is the “worst-case interference”

Ik(p) = max
ck∈Ck

p
T
vk(ck), k ∈ K . (14)
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The parameter ck can stand for some uncertainty, chosen from a
compact uncertainty set Ck. Such an interference model is used,
e.g., in the context of robust power allocation [14].
The function (14) fulfills A1–A3. Also, Ik(p) is convex on R

K
+ ,

and Ik(es) is log-convex on R
K .

In the remainder, we show strict log-convexity of the SIR region
under two different kinds of power constraints. The underlying
interference functions are assumed to be log-convex, in the sense
of Definition 4. Proofs are omitted because of the page restrictions.

3.2 SIR Region under a Total Power Constraint

Assume that the sum of all transmission powers is limited by
Ptot. The set of all possible power vectors is

Ptot = {p > 0 :
X
k∈K

p
k
≤ Ptot, p

K+1
= σ2} . (15)

Theorem 2. Let I1, . . . , IK be arbitrary log-convex interference
functions, which are strictly monotonic increasing with respect to
the noise component. For all 0 < Ptot < +∞ the SIR region
S(Ptot), as defined by (5), is contained in ST c.

Hence, the proportionally fair optimizer (2), respectively (1), is
the single-valued NBS. The existence of the optimizer is guaranteed
by the power constraints (the SIR region is a compact set).

3.3 SIR Region under Individual Power Constraints

Next, we will show the same for individual power limits pmax =
[pmax

1 , . . . , pmax
K ]T . The set of all possible power vectors is

Pind = {p > 0 : p
k
≤ pmax

k , k ∈ K, p
K+1

= σ2} , (16)

and the associated SIR region is S(Pind), as defined by (5).
Under individual power constraints, strict convexity does not

follow as easily as for the sum power constraint. Whether or not
the region is strictly convex depends on the interference coupling
in the system. In order to characterize interference coupling, we
introduce a dependency matrix

[D]kl =

8<
:

1 if there exists a p > 0 such that Ik(p + δel)
is not constant for some values δ > 0,

0 otherwise.
(17)

Here, el is the all-zero vector with the lth component set to
one. The non-zero entries in D mark the transmitter/receiver pairs
which are coupled by interference. A zero entry means that no
interference is received, no matter how large the transmission power
is. As an example, think of users that are assigned to different
orthogonal resources, or separated by adaptive interference rejection
techniques. Based on this definition, we define a dependency set

Lk = {l ∈ K : [D]kl = 1} (transmitters on which user k depends)

The possible occurrence of decoupled users did not matter under
a sum-power constraint. However, in order to analyze the behavior
under individual power constraints, a few additional definitions are
required.

Definition 5 (strict monotonicity). Ik(p) is said to be strictly
monotonic if p(1) ≥ p(2), with p

(1)
l > p

(2)
l , for one or more l ∈ Lk,

implies Ik(p(1)) > Ik(p(2)).

Definition 6 (strict log-convexity). Let p(λ) = p̂1−λ · p̌λ. A log-
convex interference function Ik is said to be strictly log-convex if
for all p̂, p̌ which are not constant on the dependency set Lk

Ik

`
p(λ)

´
<

`
Ik(p̂)

´1−λ
·

`
Ik(p̌)

´λ
, λ ∈ (0, 1) . (18)

Using these properties, the following result can be shown:

Theorem 3. Assume that I1, . . . IK are strictly monotonic and
strictly log-convex, and there is no self-interference. If DDT is
irreducible, then the SIR region S(Pind) contained in ST c.

4 CONCLUSIONS
For compact convex comprehensive utility sets, the unique so-

lution fulfilling the Nash axioms is obtained as the optimizer of a
product maximization problem, also known as proportional fairness.
In this paper we show that the Nash bargaining framework can be

extended to certain non-convex compact comprehensive sets, which
are strictly convex after a logarithmic transformation.
As an example, we have studied the SIR region of a wireless

system, based on axiomatic log-convex interference functions. Un-
der the assumption of power constraints (total and individual), it is
shown that the resulting SIR region is comprehensive, compact, and
strictly log-convex. Even though the region itself is non-convex, all
properties of the classical Nash bargaining solution are preserved.
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