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Abstract—For delay-tolerant data applications in a wireless
system, using average throughput as a quality of service (QoS)
measure results in more efficient resources allocation strategies
compared to using instantaneous signal to interference and noise
ratio (SINR). By adapting both power and rate in a multiuser
multi-antenna system based on the channel conditions, the overall
power consumption can be greatly reduced. In this paper, we
establish a general framework for optimal power and rate
allocation when there is an average throughput constraint for
each user. A key feature of the framework is that it allows
consideration and evaluation of a wide range of practical receiver
structures. The structural results show that the range of optimal
rate and power allocation policy can be specified by a set of
optimization problems over vectors, one for each fading state.
The rate constraints are taken care by a rate weight vector μ,
which can be tracked by a stochastic approximation algorithm.
The performances of different receiver structures are compared
numerically.

Index Terms—uplink, power and rate allocation, multiuser,
multi-antenna

I. INTRODUCTION

Data applications, such as Internet service, which have

become more and more popular in the emerging new gen-

eration of wireless systems, have fundamentally different QoS

requirement and traffic characteristics than voice applications.

Although data application usually require larger long-term

throughput, the traffic is burstier and relatively delay tolerant.

Using the average throughput, instead of instantaneous SINR,

as a QoS measure to exploit the relative delay tolerance of data

applications can lead to more efficient resources allocation

strategies. By adapting both rate and power based on the

channel conditions, the total system capacity could be further

increased and the power assumption could be reduced. The

problem of adapting power and rate when both transmitter and

receiver can track the channel has been extensively studied by

the information theory community in the context of ergodic

capacity. It has been shown in [1] that single user single

antenna ergodic capacity can be achieved with “water filling

over fading states”. The results have been generalized to

multiuser scalar multiaccess channel (MAC) [2] and broadcast

channel (BC) [3]. A water-filling technique for vector MAC

is proposed in [4], which can asymptotically achieve the

maximum sum capacity in a large system with many users and
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receive antennas. In [5][6], the authors develop “simultaneous

water-filling” to maximize the ergodic sum capacity of the

MIMO MAC under individual power constraints.

Prior works focused on maximizing the sum capacity or

weighted sum capacity, a commonly used figure of interest in

multiuser information theory. However, in QoS-based wireless

networks, one is more interested in the dual problem: minimiz-

ing the average sum power while satisfying the minimum aver-

age throughput constraints. Furthermore, information theoret-

ical approaches assume optimal coding and decoding, which

are hard to implement in real systems. In practice, simpler

suboptimal techniques such as linear multiuser transmitter and

receiver (e.g. zero-forcing, linear MMSE) are often used due

to their lower complexity. Motivated by these observations, in

this paper, we are seeking a generic framework to characterize

the optimal power and rate allocation polices in a multiuser

multiple antenna system with individual average throughput

constraints for each user. The approach taken in this paper is

strongly motivated by the results in [2]. We will focus on the

uplink (e.g. multiple access channel) for ease of presentation.

However, it is worth noting that most results in the uplink can

be carried over to the downlink (e.g. broadcast channel).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Channel Model

Consider the uplink of a multiuser narrowband wireless

system where a set of K users each with a single antenna is

communicating with a base station equipped with N antennas.

To capture the time-varying nature of the wireless channel,

we adopt the block flat fading channel model. Let hi[n]
(i = 1, 2, ..., K) denote the channel gain vector between

user i and the base station at block time n, where the j-

th component (j = 1, 2, ..., N ) is the complex channel gain

between user i and the j-th antenna of the base station.

Denote H[n] = [h1[n], h2[n], ...hK [n]]. The joint fading state

process, {H[n]}∞n=1 is assumed to be stationary and ergodic.

For a fixed block time n, H[n] is a N by K random matrix,

which we assume has a continuous density on its sample space

H ⊂ CN×K . We assume the channel is perfectly known at

both transmitter and receiver. The uplink discrete time channel

model is given by

yul[t] = H[n]xul[t] + wul[t], t = 1, 2, ... (1)
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where integer t is the symbol time index, and n = �t/L�
is the block time index with block length L. xul[t] =
[x1[t], ..., xK [t]]T is the K by 1 transmit vector, where xi[t] is

the information stream of user i. yul[t] is the N by 1 receive

vector. wul[t] is an N by 1 additive white complex circularly

Gaussian process with covariance matrix σ2I .

B. Power and Rate Allocation Policies

A simple power allocation policy P is a mapping

from the fading state space H to RK
+ , i.e. P(H) =

[P1(H), ...,PK(H)]T , where Pi(H) is the power allocated

to user i when channel is in fading state H . One limitation of

the simple power allocation policy is that it doesn’t allow time-

sharing. In this paper, we consider a general power allocation

policy that is a nonnegative function of fading state H and a

parameter z, where z is referred as a timesharing parameter.

The power allocation process is given by {P(H[n], Z[n])}∞n=1

where {Z[n]}∞n=1 is an i.i.d. random process. We assume

that Z[n] is uniformly distributed over [0, 1] and independent

of H[n]. Similarly, a general rate allocation policy R is

a nonnegative function of fading state H and timesharing

parameter z. R is called a simple rate allocation policy if

it is only of function of H, independent of z.

Let P̄ and R̄ denote the average power of a power allocation

policy and average throughput of a rate allocation policy,

respectively i.e.,

P̄ := E[P(H[n], Z[n])], R̄ := E[R(H[n], Z[n])]

where the expectation is taken with respect to the distribution

of H[n] and Z[n].

C. Detector

An important element of this work is the detector set

and function which is defined with a view towards enabling

consideration of practical implementation structures. In the

uplink of a wireless system, the maximum instantaneous rates

users can achieve depends not only on the power allocation

p and channel state H , but also on the MAC and physical

layer schemes employed by the system, which usually include

user scheduling, coding, decoding, multiuser detection etc. We

capture the impact of all these options through a detector ϕ
and its associated detector function.

Definition 1: (detector function) For a given detector ϕ, its

detector function rϕ(H, p) = [rϕ
1 (H,p), ..., rϕ

K(H, p)]T is a

function that maps fading state H ∈ H and power allocation

p = [p1, ..., pK ]T ∈ RK
+ to a vector of rates, where pi and

rϕ
i (H, p) are the power and rate of the user i, respectively.

In what follows, we consider detectors with the following

structure:

rϕ
i (H, p) = Ξ(piI

ϕ
i (H, p)), i = 1, 2...,K (2)

where Iϕ(H,p) = [Iϕ
1 (H,p), ..., Iϕ

K(H,p)] for all p ≥ 0
satisfies

A1) Iϕ(H,p) ≥ 0 (Positivity)

A2) If p ≥ p′, then Iϕ(H,p) ≤ Iϕ(H, p′) (Monotonicity)

And the real function Ξ : R+ �→ R+ satisfies

B1) Ξ(γ) is a nondecreasing function of γ.
B2) Ξ(0) = 0

Here, Iϕ(H, p) is similar to the interference function in-

troduced in [7], and piI
ϕ
i (H, p) has a physical meaning as

SINR. For the case with ideal Gaussian coding and decoding,

Ξ(γ) = log(1 + γ), which is the classical Shannon capacity

formula.
Usually, there is more than one detector implemented in a

system and this will become clearer in the application section.

Let Φ denote the set of detectors that is implemented in a

system. Let Up be the set of all feasible power allocation

dictated by the system design. For a given detector set Φ,

let FΦ denote the set of all feasible rate and power allocation

policy pairs.

FΦ := {(R,P) : P(H, z) ∈ Up,R(H, z) = rϕ(H,P(H, z)),
ϕ ∈ Φ for all H ∈ H and 0 ≤ z ≤ 1} (3)

Let CΦ ⊂ RK
+ denote the set of all admissible rates under

detector set Φ. i.e.

CΦ = {R ∈ RK
+ : R = R̄ for some (R,P) ∈ FΦ} (4)

CΦ is a convex set since timesharing is allowed.

D. Problem Formulation
For a given system with detector set Φ, we are interested in

the optimal power allocation policy P and the rate allocation

policy R that minimize the average weighted sum transmit

power while satisfying an average throughput constraint. The

problem is formally defined as follows:

Problem A: Given a detector set Φ, some power

weight λ ∈ RK
+ , and rate requirement Rt ∈ CΦ, we

want to find a policy pair (R∗,P∗) (referred to as

optimal policy pair) that achieves the minimum of

following constrained optimization problem:

min
(R,P)∈FΦ

λT P̄ subject to R̄ ≥ Rt (5)

Note that the sum power is just a special case where λ is

an all 1 vector. Let SA denote the set of all optimal rate and

power allocation pairs that achieve the minimum of (5).

III. STRUCTURAL RESULTS

Problem A is a constrained optimization problem over

functions. A direct solution appears to be difficult. In this

section, we will provide some structural results for the optimal

policies in terms of their range. Similar to the results in [2], we

will show that for each channel state, there is a corresponding

optimization problem over vectors (Problem B). The average

rate constraint is taken care of by the rate weight vector μ,

which plays a similar role as the Lagrangian coefficient in

nonlinear programming. Problem B is defined as follows:
Problem B: Given a vector μ ∈ RK , a power weight

λ ∈ RK
+ , a detector set Φ and a fading state H ∈ H, find

vector pair (ϕ∗, p∗) that achieves the maximum of following

constrained optimization problem:

max
ϕ∈Φ,p∈Up

μT rϕ(H, p) − λT p (6)
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Generally, there could be infinitely many solutions for Prob-

lem B. Let SB(μ, H) denote the set of all (ϕ∗, p∗) pairs that

achieves the maximum of (6). For any (ϕ∗, p∗) ∈ SB(μ, H),
we refer to p∗ and rϕ∗

(H,p∗) as the optimal power and

optimal rate of Problem B, respectively.

The relationship between Problem A and Problem B is

established by the following theorem. Due to space limitations,

the proof is omitted and the reader is referred to a full-length

version in preparation [8].

Theorem 1: Given Φ, Rt ∈ intCΦ and λ > 0, (R′,P ′) ∈
SA (solution set of Problem A) if and only if the following

two conditions are satisfied:

1) There exists μ ∈ RK (not necessarily unique) such that

for almost every given H ∈ H,0 ≤ z ≤ 1, there exists

ϕ′ = ϕ′(H, z) ∈ Φ (not necessarily unique) such that

R′(H, z) = rϕ′
(H,P ′(H, z)),

(ϕ′,P ′(H, z)) ∈ SB(μ, H)

2) R̄′ = Rt.

Theorem 1 relates Problem A to Problem B, a simpler opti-

mization problem. However, Problem B determines the range

of the optimal policy and determines an unique policy only if

the rate and power vectors resulting from solving Problem

B is unique. Otherwise, Theorem 1 offers no constructive

procedure for determining the optimal policies. Fortunately,

for many practical receiver structures this does not appear to

be an issue.

Another issue in applying Theorem 1 is determining μ.
Finding an analytical solution for μ in Theorem 1 is difficult.

We therefore resort to a numerical approach and propose

the use of the following Robbins-Monro (RM) stochastic

approximation algorithm [9] to choose μ and the rate solution

in an adaptive manner.

μ[n + 1] = μ[n] − an(r(μ[n],H[n]) − Rt) (7)

where {an} are positive step sizes, r(μ[n], H[n]) is an

optimal rate of Problem B for current μ[n] and H[n]. If

Problem B has multiple optimal rates, r(μ[n],H[n]) is chosen

to be an arbitrary solution.

IV. APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, we will apply the structural results to

different uplink schemes and compare their performance nu-

merically. We assume Up =
⊗K

i=1[0,∞) and unless specified,

Ξ(γ) = log(1 + γ). The application of the framework is

quite straightforward and involves the following steps. For

each scheme, a detector set and detector function for each

detector are first defined. Then Problem B is solved using

the defined detector function and current channel state. The

solution is related to Problem A by Theorem 1. To demonstrate

the application and utility of the framework, we now consider

some popular detectors.

A. TDMA with dynamic slot assignment and variable rate
(DSA-VR)

In this scheme, only one user is allowed to transmit at any

one time. The detector set is then by ΦTDMA = {ϕ1, ..., ϕK},

where ϕi is the detector when only user i is transmitting. The

detector function is given by

rϕi

j (H, p) =
{

log(1 + pi‖hi‖2) j = i
0 j �= i

(8)

Note that the detector function implicitly supports the one user

at a time transmit policy and this simple example serves to

indicate the multifaceted nature of the detector function and

hence the framework. By substituting (8) into (6), Problem B

in this setting is reduced to

max
1≤i≤K

max
pi

{
μi log(1 + pi‖hi‖2) − λipi

}
(9)

The solution to the inner optimization of (9) is based on the

classic water-filling principle

pi =
[
μi

λi
− 1

‖hi‖2

]+

(10)

And the criterion of choosing the optimal user to transmit is

i = arg max
1≤i≤K

(
μi

[
log

μi‖hi‖2

λi

]+

−
[
μi − λi

‖hi‖2

]+)
(11)

Given current channel state H , (11) is used to decide which

user transmits. If user i is selected, it is allocated with power

level given in (10) and rate level log(1 + pi‖hi‖2). Note that

it is possible that no user is scheduled to transmit when all

users experience deep fading.

B. TDMA with dynamic slot assignment and fixed rate (DSA-
FR)

It is similar to the DSA-VR scheme. The only difference

is that the transmission rate of user i is fixed to be C if

it is selected for transmission, where C =
∑K

i=1 Rt
i is the

total throughput requirement. This can be done by modifying

function Ξ as follows:

Ξ(γ) =
{

C if log(1 + γ) ≥ C
0 if log(1 + γ) < C

(12)

C. Zero-forcing (ZF)

To further confirm the general nature of the framework

developed, we now consider a more complex multiuser re-

ceiver, the zero-forcing receiver. Define active antenna set U
as a set that contains indexes of all users with nonzero power

allocations. The detector set is then given by

ΦZF = {ϕU : U ⊂ {1, ..., K}, 1 ≤ |U| ≤ N} (13)

where ϕU denotes the detector with active user set U . The

detector function is given by

rϕU
i (H, p) =

⎧⎨
⎩

log
(

1 + pi

‖gU,i‖2

)
i ∈ U

0 i /∈ U
(14)
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where

[gU,i1 , ..., gU,i|U| ] = HU (HH
U HU )−1 (15)

To solve Problem B with detector set ΦZF , we need to

consider the following problem

max
U

∑
i∈U

(
max
pi≥0

μi log
(
1 +

pi

‖gU,i‖2

) − λipi

)
(16)

The inner maximization (16) is simple, and the maximum is

obtained when

pi =
[
μi

λi
− ‖gU,i‖2

]+

(17)

and the criterion for choosing optimal active antenna set U∗

is

U∗ = arg max
U

∑
i∈U

(
μi

[
log

μi

λi‖gU,i‖2

]+

−
[
μi−λi‖gU,i‖2

]+)

(18)

The framework has also been applied to other more complex

receiver structures such as optimal linear receiver (linear

MMSE), MMSE-SIC etc and used to provide interesting

insight. The interested reader is referred to our full-length

submission for details [8].

We now provide some numerical results to provide a feel

for the utility of the framework. For this numerical study,

we assume λ = [1, ..., 1]T . For comparison purpose, we also

include two traditional TDMA schemes: FSA-FR, and FSA-

VR. In both schemes, the users transmit in a round-robbin

manner. The difference is that in the former one, the user

transmits with fixed rate when selected, while the latter uses

water-filling power and rate allocation.

The above schemes can be grouped into 3 classes: Class 1

is TDMA schemes with no DSA, including FSA-FR and FSA-

VR; Class 2 is TDMA schemes with DSA, including DSA-FR

and DSA-VR; Class 3 is SDMA schemes including ZF, linear

MMSE, and MMSE-SIC.

Figure 1 shows the numerical results of the above schemes

under different system configurations. Each curve corresponds

to one configuration. For example, “4x2 C=4 equal rate”

denotes 4 users, 2 receive antennas at the base station, total

throughput requirement is 4 bits/symbol and users have the

same rate requirement, e.g. Rt = [1, 1, 1, 1] bits/symbol. “4x2

C=4 [2,1,2/3,1/3]” is similar except that the rate requirement

of users are not equal and is given by Rt = [2, 1, 2/3, 1/3].
The rate weight μ is found by the adaptive algorithm in (7)

with diminishing step size an = 1
n . Several observations can

be made based on the numerical results:

• Class 2 outperforms Class 1 and the gain is more pro-

nounced when the number of users is large. However,

within Class 2, DSA-VR is only slightly better than

DSA-FR. This implies that in a system with many users,

by taking advantage of multiuser diversity, scheduling

alone can achieve most of performance gain. The benefit

of additional rate adaption is much smaller than those

obtained with scheduling. In practice, DSA-FR might be
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Fig. 1. Comparison of total average power consumption of different schemes

preferable due to its lower complexity compared with

DSA-VR.

• Class 3 outperforms Class 2 due to the spatial multi-

plexing of SDMA schemes. The gain increases with total

throughput and the number of receive antennas. When

total throughput requirement is low (C = 4), simple

TDMA-DSA schemes in Class 2 performs quite close

to SDMA schemes in Class 3.

• The performances of schemes within Class 3 are quite

close. Linear MMSE is slightly better than ZF as ex-

pected. Somewhat surprisingly, MMSE-SIC, which is the

optimal scheme, is only about 0.5 db better than linear

receiver (ZF and MMSE). Considering that error propaga-

tion is likely in practical implementations of MMSE-SIC,

its performance in reality can be even worse.
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