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ABSTRACT
The dynamic allocation of resources in OFDMA networks has re-
cently been an active area of research. Most of the given solutions in
the literature assume however that perfect channel state information
(CSI) is available at the transmitter side. In this paper, we present
a novel algorithm that jointly estimates the channel and allocates re-
sources in OFDMA networks. Unlike the previous OFDMA chan-
nel estimation algorithms, we consider here the downlink case. The
proposed approach transforms the original non-convex optimization
problem into a set of consecutive smaller sub-problems that can be
efficiently solved in an independent manner. The algorithm mini-
mizes the mean squared error of the estimate of the channel while
maximizing the average user utility function of the OFDMA system.

Index Terms— OFDMA, Multi-user OFDM, PSAM, Channel
Estimation, Resource Allocation, downlink channel, WiMAX

1. INTRODUCTION

Multiuser orthogonal frequency division multiplexing (OFDM) sys-
tems, also known as Orthogonal Frequency Division Multiple Ac-
cess (OFDMA), are quickly becoming the system of choice for many
new communication standards. For example, OFDMA is currently
used in WiMAX (IEEE 802.16) [1] and in 3GPP long-term evolu-
tion (LTE) [2]. OFDMA is essentially a multi-user communication
system that utilizes standard OFDM modulation and demodulation
blocks, and thus preserve the attractive benefits of these multi-carrier
transmission systems. Unlike the conventional OFDM case where
all sub-carriers are allocated to a single user, each sub-carrier is ex-
clusively assigned to a user in an OFDMA network. The commu-
nication link between each user and the base station is modelled as
a time varying channel response, and differs from one user to the
other. OFDMA algorithms exploit this spectral diversity to dynam-
ically allocate the available system resources such as constellation
size, power, and subcarrier assignment among the different users to
maximize the system efficiency and ensure fairness in resource dis-
tribution. The dynamic resource allocation of an OFDMA network
is currently an active area of research where the assignments of these
resources is chosen optimally in order to maximize a so-called util-
ity function (see [2], [3], [4], and [5] to name a few). However, for
these algorithms to be effective, perfect channel state information
(CSI) is required at the transmitter. The problem of channel esti-
mation in OFDMA systems has been considered recently in [6], [7],
and [8]. All of these research contributions study the uplink case and
focus mainly on reducing the pilot overhead, a challenging problem
in channel estimation of OFDMA uplink systems. In this paper, we
propose a completely different paradigm for OFDMA channel es-
timation. In specific, we study the channel estimation problem in

the downlink case and propose the deployment of the pilot symbol
assisted modulation (PSAM) technique where a subset of the sub-
carriers are reserved for training during every OFDM frame [9] in-
stead of the pre-amble technique where all sub-carriers are used for
transmitting training symbols in specific OFDM frames [9]. The
motivation for doing this is two folds: first, in the downlink case,
the same set of training subcarriers or pilots can be employed by all
users, eliminating therefore the problem of pilot overhead. Second,
the PSAM approach, which is usually preferred to the pre-amble one
when the channels are highly time-varying, can be now exploited to
estimate the channels [10]. Interestingly enough, and unlike the up-
link case, the channel estimation problem is not anymore decoupled
from the dynamic resource allocation problem and a solution that
achieves a balanced tradeoff between the two is now required. The
main contribution of this paper is therefore the derivation of a new
algorithm for the joint channel estimation and dynamic resource al-
location of OFDMA downlink systems. Although the proposed algo-
rithm is sub-optimal (the joint optimization problem is non convex),
it has linear complexity and exhibits an elegant layered structure. In
specific, the new algorithm is partitioned into simple blocks that are
independent from each other. The effect of each block on the overall
performance can then be effectively monitored and future updates
can be easily incorporated in the algorithm to improve performance.

2. PROBLEM FORMULATION

We assume an OFDMA network consisting of a single base station
andM independent users, all with single antennas. The set of users
is given byM = {1, . . . , M}. The available bandwidth, B, is di-
vided amongK sub-carriers, each with a bandwidth ofBs = B/K.
The set of available sub-carriers is thenK = {1, . . . , K}. Assuming
the cyclic prefix is of adequate length, the OFDMA signal is

ym[n] = Xm[n]Gm[n]hm[n] + wm[n] (1)

where n is the time index, ym is the received OFDMA signal for
userm,Xm is a diagonal matrix with the transmitted symbols along
the diagonal entries, Gm is a diagonal matrix with diagonal entries
given by [Gm]k,k =

√
pm,k with pm,k being the transmit power for

user m on subcarrier k, wm is circularly symmetric white gaussian
noise with variance σ2

w = N0B/K and noise floor N0, and hm is a
vector of the frequency domain channel path gain for userm with

hm,k[n] =
1√
K

LX
i=1

gm,i[n]e−j2πik/K (2)

where gm,i is the ith channel tap for user m, and L is the length of
the channel impulse response. The achievable rate on any sub-carrier

31451-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



for a given user is given in [11] as

cm,k[n] = log2

„
1 + βpm,k[n]

|hm,k[n]|2
σ2

w

«
(3)

where the product pm,k[n]|hm,k[n]|2/σ2
w represents the signal to

noise ratio experienced by userm on subcarrier k, and β is a constant
defined by the acceptable bit error rate (BER) as follows

β =
1.5

−ln(5BER)
(4)

A utility function is typically assigned to each user and quantifies the
“satisfaction” of each individual. User utility must be monotonically
increasing, i.e., Um(x + Δ) ≥ Um(x) ∀ Δ ≥ 0 [12]. Given (3) and
for every time frame index ‘n’, the resource allocation that provides
maximum average utility is found by solving the following problem

Uavg =
argmax

P ∈ P
1

M

MX
m=1

Um(Rm) (5)

where Rm =

KX
k=1

Bslog2

„
1 + βpm,k

|hm,k|2
σ2

w

«

s.t.

PM
m=1

PK
k=1

pm,k ≤ PT

pm,kpa,k = 0 ∀ m �= a

where Um(.) is the chosen utility function for userm, P is a matrix
of the transmit power for the user and subcarrier pairs, i.e. [P]m,k =
pm,k, and P is the set of all possible power allocations. The con-
straints are such that the total transmit power is within the power
budget and only one user is assigned to each subcarrier. It should be
noted that the optimization in (5) maximizes the average utility of
the system users, which is a function of the rate and not the rate it-
self. In general, a solution which maximizes the average utility does
not guarantee maximum system throughput. If maximum total rate
is desired, the utility function should be chosen equal to the user rate.
The PSAM approach. Training symbols, known to both the trans-
mitter and receiver, are inter-mixed with the data symbols during
each frame. Np subcarriers are therefore chosen from the set of all
available subcarriers to transmit these training symbols. The set of
pilots, the subcarriers used for training symbol transmission, is given
by z = [z1, . . . , zNp ] ∈ K, where zi is the location of the ith train-
ing subcarrier. By using only the chosen sub-carriers, (1) becomes

y
p
m[n] = X

p
m[n]Gp

m[n]hp
m[n] + w

p
m[n] (6)

where ()p denotes the subset corresponding to the training subcar-
rier set. The diagonal of Xp

m[n] contains the pilot symbols and is
thus known at the transmitter and receiver. The frequency domain
channel path gains is estimated using a least squares approach

ĥ
p
m[n] = (Xp

m[n]Gp
m[n])† yp

m[n] (7)

where † represents the pseudo inverse operator. The time domain
channel response is obtained by using the inverse discrete Fourier
transform (IDFT). From (2), we can write

hm[n] = QL[n]gm[n] (8)

where QL[n] is the K × L DFT matrix. To derive an expression
that includes only the pilot symbols, we choose the rows ofQL that
correspond to the pilot subcarrier set z, and create the DFT matrix
Qp[n]. It follows that

ĝm[n] = Q
p[n]−1

ĥ
p
m[n] (9)

From (9) and (7), we can express the mean squared error (MSE) as

E
ˆ|ĝm[n] − gm[n]|2˜ = σ2

wtr

“
Q

p[n]HΘ[n]Qp[n]
”−1

(10)

where H represents the hermitian transpose operator and Θ[n] is a
diagonal matrix with the transmit power of each training subcarrier
along the diagonal entries. The matrix Qp[n], and thus the MSE, is
entirely dependent upon the choice of z. The effect of pilot place-
ment on user utility is studied by incorporating the indicator function

bk =

(
0 if k ∈ z

1 otherwise
(11)

into the objective function of (5) to get

Uavg =
1

M

MX
m=1

Um

 
Bs

KX
k=1

cm,kbk

!
(12)

Clearly, a decrease in average user utility occurs when training sub-
carriers are chosen in the specific sub-carrier locations that are capa-
ble of higher transmission rates. The average user utility is therefore
highly sensitive to the choice of pilot placement when a large amount
of rate diversity exists, i.e., when the choice of sub-carriers produces
a wide range of transmission rates. This in particular happens when
there is substantial frequency selectivity in the underlying channel.

3. MINIMIZING UTILITY LOSS

The optimization problem (5) with the modified average user utility
function (12) is a combinatorial optimization problem in which the
decision variables bk are discrete and the constraints are non linear
and non convex. Furthermore, the problem has prohibitively high
computational complexity. In the remainder of this paper, we will be
therefore interested in developing a suboptimal algorithm that gen-
erates adequate solutions at an acceptable computational cost. Our
approach is as follows: from (10) and (12), a tradeoff exists between
minimumMSE (MMSE) and the maximum average user utility. The
choice of pilot placement for maximum utility may not give reliable
channel estimates and errors in channel estimation can potentially
degrade the system performance. It is therefore reasonable to first
restrict the pilot placement to the locations that provides the MMSE
channel estimate. In [10], the authors show that for the single user
OFDM case, this is achieved by equally spaced pilot sub-carriers

z = [i, i +
K

Np
, . . . , i +

(Np − 1)K

Np
] (13)

where i ∈ [0, . . . , K
Np

− 1]. Additionally, the solution requires
that equal power be used for all pilot subcarriers, i.e. [Θ]c,c = θ.
As noted in [10], the result holds independent from the choice of
i. In other words, any value of i ∈ [0, . . . , K

Np
− 1] produces an

MMSE estimate of the channel, independent of the specific channel
response. In our case however, while the MSE remains constant for
all choices of i, the user utility is dependent on i, thus the choice of i
is no longer independent of the channel response. Since the channel
is time-varying, the maximum average user utility can be achieved
by assigning the pilot placement dynamically for each channel re-
alization. This dynamic pilot placement can be used in conjunction
with a dynamic subcarrier assignment (DSA) and adaptive power al-
location (APA) algorithm to obtain a joint resource allocation and
channel estimation algorithm. Before describing the details of the
new algorithm, we illustrate the above ideas with a simple example.
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Example. Assume that the number of users M = 2. Let the num-
ber of subcarriers beK = 4, and the number of training symbols per
frame beNp = 2. The set of possible rates for each user are given as
[2, 2, 0, 2] for user1 and [2, 0, 4, 2] for user2. The utility function
chosen for this example is given as Um = ln(Rm) for allm and the
subcarrier bandwidth is equal to 1 KHz. If a fixed pilot placement
is used, then, the high rate sub-carriers might be used for pilot sym-
bols. To illustrate a worst case scenario, assume that the fixed pilot
placement is chosen such that the pilots are always assigned to the
subcarriers 1 and 3 and UAV G = 0.693. By contrast, the dynamic
pilot placement in this case would choose subcarriers 2 and 4 and
the corresponding UAV G = 1.039.

4. ALGORITHM AND COMPLEXITY ISSUES

We start with a dynamic subcarrier assignment (DSA) algorithm to
allocate sub-carriers among the users. Using (3), and a fixed power
allocation, the rates for each user can be calculated for each subcar-
rier. The maximum total rate is found by adding all possible subcar-
rier rates for each user. There are only K/Np possible choices of i,
and an exhaustive search in this case is computationally acceptable.
For each of these choices, the possible rates for the corresponding
subcarriers can be subtracted to determine the total rate for each user
assuming the given pilot placement. Finding the total rate and then
subtracting the rates lost due to the pilot symbols makes use of the in-
herent redundancy to reduce the complexity, as compared to finding
the total rate for each pilot placement. From this adjusted rate, the
average user utility can be found. The choice of i that maximizes the
average user utility is then used to assign the pilot subcarriers. Af-
ter the pilot placement has been found, the power can be distributed
among the nonpilot subcarriers using an adaptive power allocation
(APA) procedure. Since the pilot subcarriers are required to have a
fixed power, the total power constraint used by the APA algorithm
must be reduced accordingly. A summary of the algorithm is de-
picted below and clearly shows the modular nature of the proposed
approach. The solution of the joint optimization problem is given
through a union of independent blocks, namely a channel estimation
stage, a DSA block, the DPP algorithm, and an APA procedure over
the remaining sub-carriers. It is assumed that a separate channel is
available to relay resource and pilot assignments to the individual
users of the system. From the outline of the proposed algorithm, the
channel estimate at time ‘n − 1’ is used for resource allocation and
pilot placement at time ‘n’. Finally, a fixed pilot placement is used to
initialize the system when no previous channel estimate is available.
It is important to keep in mind at this point that the algorithm given
in the table is valid for any admissible choice of the utility function.

Joint Algorithm
Previous Channel Estimation Available
iterative loop

DSA algorithm
DPP

Rm =
PK

k=1
cm,k ∀ m

for s = 0 : Np − 1

R′m,s = Rm −PNp−1

v=0 cm,s+ K
Np

v ∀ m

Us = 1

M

PM
m=1

Um(R′m,s)
end
i = argmax ∀ s Us

pm,k = θ ∀ k ∈ z

APA over remaining subcarriers
end loop

Complexity Issues. Finding the total possible rates for each user
requires MK operations. The linear search of possible choices of
i requires K/Np iterations. During each iteration, the Np lost rates
must be subtracted. Therefore, the number of operations for the lin-
ear search is K. From this, the overall complexity of the dynamic
placement algorithm is O(MK). The DSA and APA algorithms
used here are the ones proposed in [5]. In general, the APA algorithm
has a complexity ofO(K) and the DSA algorithm has a complexity
of O `(M − 1)2Klog(K)

´
. However, if the utility function is cho-

sen to be linear, e.g., the maximum sum of weighted rates [2], the
complexity of the DSA algorithm is reduced to O `(M − 1)2K

´
.

SinceK � M , the algorithm has linear complexity in such a case.

5. SIMULATION RESULTS

We considered an OFDMA network withM = 2 users and a subcar-
rier bandwidth of approximately 10 KHz. Rayleigh fading channels
with different power delay spreads were used in the simulations. For
each channel realization, the resources were allocated and the aver-
age user utility found. The dynamic pilot placement algorithm was
compared to a fixed pilot placement (FPP) algorithm, where i = 3
was utilized regardless of the channel realizations. Both the FPP
and DPP methods used the DSA and APA algorithms proposed in
[5] to distribute the system resources. The first set of simulations
were performed over 100 channel realizations with a fixed SNR of
15 dB, with the utility found for each channel realization. This illus-
trates the potential utility improvement of the DPP algorithm. The
results shown in Fig. 1 were found using the best effort traffic utility
function defined in [13] with a bad urban delay spread and a doppler
frequency of 350 Hz. Fig. 2 were also performed using the best ef-
fort traffic utility function and a doppler frequency of 350 Hz, but
employed a flat delay spread, or equal power on all channel taps.
Fig.3 shows results found using a weighted sum of rates utility func-
tion, where the utility function for each user is simply a weighting
factor [2]. The weighting for this simulation was chosen as [.3, .7]
and a bad urban delay spread was used with a doppler frequency of
100 Hz. The results in Fig. 4 again employed a weighted sum of
rates utility function and used a flat delay spread with a doppler fre-
quency of 100 Hz. The final set of simulations were performed over
a range of different SNR values. For each value, resource allocation
and pilot assignment were performed for 100 channel realizations.
The average utility was found for each channel realization and the
results in Fig. 5 shows the average utility improvement in this case.
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