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ABSTRACT

This paper is devoted to the performance analysis of downlinkMIMO-
CDMA receivers based on a chip rate MIMO equalizer followed
by despreading. The various transmit antennas send independent
streams and the spreading codes are scrambled Walsh-Hadamard
sequences, the various transmit antennas being allocated different
scrambling codes. The behaviour of the SINR provided by the re-
ceiver is first studied when the spreading factor and the number of
users per antenna converge to +∞ at the same rate. It is shown that
the SINR converges towards a simple expression depending on the
particular realization of the frequency selective channel between the
base station and the mobile of interest. In order to get more insights
on the long term performance, the ergodic sum-capacity delivered
by the system is evaluated in the large number of antennas regime
in the case the impulse response taps of the channel are Gaussian
random matrices. A simple expression is obtained. It appears to be
quite reliable for a realistic number of antennas, and is discussed in
order to get some insights on the overall performance.

Index Terms— CDMA, MIMO, large system performance

1. INTRODUCTION

It is now well established that using multiple transmit and receive an-
tennas potentially allows to increase the Shannon capacity of digital
communications systems. Since the seminal work of Teletar ([9]),
the capacity of block fading MIMO systems has been studied exten-
sively and important questions such as the impact of channel corre-
lations on the capacity or the design of optimal precoding schemes
have been addressed by several authors (see e.g. [4]). MIMO sys-
tems is also considered as a valuable solution to increase the overall
performance of CDMA systems. In particular, the use of transmit
diversity as well as space-time codes is considered in the 3G UMTS
system, and the so-called HSDPA, an evolution of UMTS, is sup-
posed to work with multiple transmit and receive antennas. It is
therefore very important to study the capacity of MIMO CDMA sys-
tems in order to precise how relevant parameters influence the best
achievable performance. Although several works have been devoted
to MIMO CDMA systems, the above capacity issues do not seem to
have been considered extensively in the past. [6] studied the spectral
efficiency of such systems when the number of users and the spread-
ing factor converge to +∞ at the same rate. This work addresses
specifically the uplink context: the spreading codes allocated to the
various users are independent i.i.d. sequences while in the downlink
orthogonal codes are used. Moreover, MMSE receivers considered
in [6] can in practice be used if the receiver is aware of the codes

allocated to the various users; this is not the case in the downlink
context.

In this paper, we consider the downlink case, which as men-
tioned in the recent work [1], is of special importance. We assume
that each transmit antenna sends a standard downlink UMTS sig-
nal (see below for more details), that the spreading factor and the
number of symbol sequences corresponding to each antenna coin-
cide, and that the symbols transmitted by the various antennas are
mutually independent. Moreover, the scrambling codes allocated to
transmit antennas are assumed mutually independent. We study the
SINR provided by the chip rate MMSE equalizer followed by de-
spreading, and show that when the spreading factor and the number
of users converge to +∞, then the SINR converges to a simple ex-
pression depending on the current value of the frequency selective
channel transfer function. This extends our previous results [7] ob-
tained in the SISO case.

In order to have a better understanding of the average perfor-
mance provided by this receiver, we study the mathematical expec-
tation w.r.t. the channel distribution of the sum-capacity delivered to
mobile stations in the following particular case: the number of phys-
ical users (i.e. the number of mobile stations) coincides with the
(common) number of symbol sequences sent by each antenna, and
each mobile receives one symbol sequence per transmit antenna. In
this context, the transmit antennas array is used in order to increase
the rate delivered to each mobile. The impulse response taps of the
propagation channel are modelled as mutually independent Gaussian
random matrices. We also assume that the transmit antennas can be
correlated. As the expression of the above ergodic capacity is very
complicated, we propose to evaluate its behaviour when the number
of transmit and receive antennas converge to +∞. We show that it
converges to a rather simple expression, which, as in other contexts
(see e.g. [8]) appears to be quite reliable for a realistic number of
transmit and receive antennas. We take benefit of this result to dis-
cuss on the influence of the loading factor of the system and of the
transmit antennas correlation on the capacity. We show that the ca-
pacity increases when the loading factor increases. Moreover, we
prove that the best result is obtained if the transmit antennas are not
correlated. Finally, we prove that if the transmit antennas are not
correlated, then the best transmission scheme does not correspond
to a uniform power allocation to the transmit antennas, but that an
antenna selection strategy can provide better results. Our approx-
imate expression of the sum-capacity can also be used in order to
address other topics such as optimum precoding, but these issues are
not discussed in the present paper.

31331-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



2. SIGNAL MODEL AND UNDERLYING ASSUMPTIONS.

We denote by r and t the number of receive and transmit antennas
respectively. We assume that each transmit antenna j sendsK sym-
bol sequences (bj,k)k=1,...,K that are supposed to be independent
across the transmit antennas. The spreading factor is the same
on each transmit antenna, and is denoted by N . The loading fac-
tor K

N
is denoted α from now on. Motivated by the UMTS spec-

ifications, the spreading codes allocated to the various symbol se-
quences transmitted by antenna j are normalized Walsh-Hadamard
codes (i.e. the code sequences terms are equal to ± 1√

N
while in the

case ofWalsh-Hadamard sequences, they are equal to±1) scrambled
by a long code sequence (sj(n))n∈Z which is called the scrambling
code of antenna j. We model each sequence sj as an independent
identically distributed QAM4 sequence, and assume that sequences
(sj)j=1,...t are independent. The chip sequence generated by an-
tenna j is denoted (dj(n))n∈Z, and is thus defined by the fact that
vector dj(m) = (dj(mN), . . . , dj(mN + N − 1))T is given by

dj(m) = Sj(m)Wjbj(m)

where Sj(m) is the diagonalN ×N matrix with entries (sj(mN +
n)n=0,...,N−1, bj(m) is the K–dimensional vector of transmitted
symbols bj(m) = (bj,1(m)), . . . , bj,K(m))T , andWj is the N ×
K matrix corresponding to the normalized Walsh-Hadamard codes
of the various users transmitted by antenna j; it satisfiesWH

j Wj =

IK . This in particular implies that 1
N

E(‖dj(m)‖2) = α, and that
the average power of sequence (dj(n))n∈Z is equal to the loading
factor α. Finally, in order to simplify the notations, we assume that
the powers allocated to the sequences (dj)j=1,...,t all coincide: in
other words, all the antennas transmit the same power.

We now consider a certain mobile of interest equipped with a
receiver with r antennas. The r-variate received signal sampled at
the chip rate, denoted y(n) = (y1(n), . . . , yr(n))T , is given by

y(n) =

tX
j=1

L−1X
l=0

hj(l)dj(n − l) + v(n) (1)

where hj(z) =
PL−1

l=0 hj(l)z
−l is the discrete-time equivalent 1

input / r-outputs channel between antenna j and the receive anten-
nas array, and where v is a white noise such that E(v(n)v(n)H) =
σ2Ir . In the following, we denote byH(z) = (h1(z), . . . ,ht(z)) =PL−1

l=0 H(l)z−l the r×t transfer function of the MIMO channel un-
der consideration.

We now present the statistics of the channel. We assume that
the channel is a block fading multi-paths channel (i.e. the matrices
(H(l))l=0,...,L−1 remain constant on each slot), and that the coef-
ficient taps (H(l))l=0,...,L−1 are mutually independent zero mean
Gaussian random matrices. Moreover, we model a possible trans-
mit antenna correlation as in [2] by assuming that for each l =
0, . . . , L − 1, then

H(l) = p1/2 1√
Lt

H(l)C(l)1/2 (2)

where H(l) is a zero mean complex random Gaussian matrix with
unit variance independent identically distributed entries. MatrixC(l)
is a positive matrix modelling the impact of transmit antenna corre-
lation on the l − th path. We assume that 1

L

PL−1
l=0

1
t
Tr(Cl) = 1.

This normalization ensures that p represents the total received power
per receive antenna. It is independent of L and t; this allows to com-
pare in a fair fashion situations in which the number of paths and the
number of transmit antennas differ.

3. BEHAVIOUR THE SINR OF THE CHIP RATE
EQUALIZER FOLLOWED BY DESPREADINGWHENK

AND N CONVERGE TO +∞

We assume that the symbol sequence (b1,1(m))m∈Z is transmitted
to the mobile station of interest. On each slot, the mobile station
is supposed to be aware of the current value of the MIMO trans-
fer function H(z). In the following, we study the SINR provided
by the receiver consisting in a chip-rate MMSE equalizer followed
by a despreading. This SINR is denoted β1,1(N) in the follow-
ing. This scheme is an obvious MIMO generalization of the re-
ceiver proposed by [3] and [5]. The chip sequence (d1(n))n∈Z is
first estimated by d̂1(n) =

PN
l=−(N−1) g(l)y(n− l) where g(z) =PN

l=−(N−1) g(l)z−l is the non causal MISO filter that would coin-
cide with the Wiener filter if all sequences (dj)j=1,...,t were mutu-
ally independent i.i.d. sequences of variance α. See [7] for more
details in the SISO case. Next, symbol b1,1(m) is estimated by
b̂1,1(m) = wH

1,1S1(m)H d̂1(m)wherew1,1 is theWalsh Hadamard
code allocated to symbol sequence b1,1 and where
d̂1(m) = (d̂1(mN), . . . , d̂1(mN + N − 1))T . Using the expres-
sion of b̂1,1(m), it is possible to evaluate the SINR β1,1(N) pro-
vided by this receiver. It is a complicated function of the various
scrambling codes, Walsh-Hadamard codes, and of the channel coef-
ficients. However, when K and N converge to +∞ in such a way
that the loading factor α is kept constant, then, the expression of
the SINR converges to a much simpler expression that only depends
on the current value H(z) of the channel transfer function. More
precisely, the following result holds.

Theorem 1 When K and N converge to +∞ in such a way that
K
N
remains equal to α, the SINR β1,1(N) converges in probability

towards the term β1 given

β1 =
1

α

R 1/2

−1/2
η1(e

2iπf ) df

1 − R 1/2

−1/2
η1(e2iπf ) df

(3)

where the function η1(e
2iπf ) is defined by

η1(e
2iπf ) = h1(e

2iπf )H

„
H(e2iπf )H(e2iπf )H +

σ2

α

«−1

h1(e
2iπf )

This result is a an extension of the main result of [7] devoted to the
SISO case, and it can be proved similarly.

4. ANALYSIS OF THE ERGODIC SUM CAPACITY
DELIVERED BY THE SYSTEM.

In this section, we study the ergodic sum-capacity per transmit an-
tenna delivered by the system in the following particular situation:

The number of mobile stations of the cell is equal toK
For each transmit antenna j, symbol sequence (bj,k(n))n∈Z is

sent to mobile k
In this particular context, the goal of the MIMO system is thus

to increase by a factor t the rate delivered to each mobile station
rather than increasing the number of mobile stations communicat-
ing with the base station. In order to evaluate the ergodic sum ca-
pacity, we first consider the maximum rate than can be provided
to mobile station i. This mobile station receives symbol sequences
b1,i, b2,i, . . . , bt,i. As we now considerK different mobile stations,
we have to introduce the corresponding channel transfer functions
that we denote Hi(z) =

PLi−1
l=0 Hi(l)z

−l, for i = 1, . . . , K ,
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where the matrices (Hi(l))l=0,...,Li−1 are defined as in Eq. (2) in
terms of power pi and covariance matrices (Ci(l))l=0,...,Li−1. We
denote by Ri(N) the maximum rate delivered to mobile station i,
which, expressed in bits/symbol duration/ Hz, is given by

Ri(N) =
1

N
E

"
tX

j=1

log2(1 + βj,i(N))

#

Theorem 1 implies that when K and N converge to +∞ in such
a way that K

N
= α, then Ri(N), a O( 1

N
) term, can be written as

Ri(N) = Ri + o( 1
N

) where the asymptotic rate Ri is given by

Ri =
1

N
E

"
tX

j=1

log2(1 + βj,i))

#
(4)

where βj,i is given by (3), but in which function η1(e
2iπf ) is re-

placed by ηj,i(e
2iπf ) given by

hj,i(e
2iπf )H

„
Hi(e

2iπf )Hi(e
2iπf )H +

σ2

α
Ir

«−1

hj,i(e
2iπf )

The exact expression of Ri is of course still quite complicated, and
difficult to exploit. As shown below, the terms (βj,i)j=1,...,t can be
approximated by simple deterministic terms (i.e. independent of the
particular realization of the channel) when the number of transmit
and receive antennas r and t converge to +∞ at the same rate (i.e.
in such a way that t

r
converges toward a non zero constant). There-

fore, Ri can itself be approximated by a simpler expression, in prin-
ciple valid for a large number of antennas. However, these kind of
approximations are known to provide in general very reliable evalu-
ations for realistic number of antennas, see e.g. [8] in other contexts.
As our numerical evaluations show (see below), the large antenna
numbers approximation turns out to be also quite accurate in our
framework.

We first evaluate the asymptotic behaviour of βj,i for j = 1, . . . , t
when r and t converge to +∞ at the same rate. For this, we first ob-
serve that for each frequency f , matrixHi(e

2iπf ) is given by

Hi(e
2iπf ) = p

1/2
i

1√
Lit

Li−1X
l=0

Hi(l)Ci(l)
1/2e−2iπlf

As mentioned in e.g. [2],Hi(e
2iπf ) can be written as

Hi(e
2iπf ) = p

1/2
i H̃i(e

2iπf )C
1/2
i (5)

where matrix Ci is defined as Ci = 1
Li

PLi−1
l=0 Ci(l), and where

matrix H̃i(e
2iπf ) is a zero mean Gaussian r× t random matrix with

variance 1
t
i.i.d. entries. This is based on the observation that the

covariance matrix of vec(Hi(e
2iπf )) coincides with pi/tCi ⊗ Ir .

Next, using the matrix inversion lemma as well as the expression of
the diagonal entries of the inverse of a positive matrix, we remark
that ηj,i(e

2iπf ) can be written as

ηj,i(e
2iπf ) = 1 − σ2

α

„
Hi(e

2iπf )H
Hi(e

2iπf ) +
σ2

α
Ir

«−1

j,j

or using (5), ηj,i(e
2iπf ) = 1 − σ2

αpi

`
Qi(e

2iπf )
´

j,j
where matrix

Qi(e
2iπf ) is defined as

Q(e2iπf ) =

„
Ci

1/2
H̃i(e

2iπf )H
H̃i(e

2iπf )C
1/2
i +

σ2

αpi
It

«−1

It turns out that for each f , the entries of random matrix Qi(e
2iπf )

converge almost surely towards the entries of a deterministic matrix.
The corresponding result is stated in the following theorem whose
proof is omitted.

Theorem 2 For each f , when t and r converge to +∞ at the same
rate, then, the entries of matrix σ2

αpi

Q(e2iπf ) converge in probability
towards the entries of the deterministic matrix (It +δiCi)

−1, where
δi is the unique strictly positive solution of the equation

δi =
r

t

1

σ2/αpi + 1
t
TrCi(I + δiCi)−1

(6)

This implies that ηj,i(e
2iπf ) can be approximated by the determin-

istic term 1 − ((It + δiCi)
−1)j,j , which, of course, is independant

from f . Therefore, if we denote by β∗j,i the term defined by

β∗j,i =
1

α

»
1

(I + δiCi)j,j
− 1

–
(7)

then, βj,i − β∗j,i converges in probability towards 0 when r and t
converges to +∞ at the same rate. This in turn implies that Ri has
the same asymptotic behaviour than R∗i defined by

R∗i =
1

N

tX
j=1

log2(1 + β∗j,i) (8)

We now summarize the above discussion informally.

Claim 1 In the large system limit, the sum capacity
R(N) =

PK
i=1 Ri(N) has the same behaviour than R∗ defined by

R∗ =
1

N

KX
i=1

tX
j=1

log2(1 + β∗j,i) (9)

where for each i, j, β∗j,i is defined by (7).
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Fig. 1. Accuracy of the approximation.

The sum capacity thus appears as a relatively simple term de-
pending from covariance matrices (Ci)i=1,...,K and from the re-
ceived powers (pi)i=1,...,K . We note that if all the matrices Ci are
reduced to I, then terms (δi)i=1,...,K can be expressed in closed
form because the equation (6) reduces to a degree 2 polynomial
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equation. In order to verify the accuracy of R∗, we consider the
case where the (pi)i=1,...,K coincide, and where the matrices Ci

are reduced to It. For L = 10, N = 256 and various values of K,
Fig 1 represents R(N) and R∗ in terms of α for a signal to noise
ratio equal to 10 dB for r = t = 4. The mathematical expectation
introduced in the definition of R(N) is evaluated by Monte-Carlo
simulations. It is seen that the fit between R(N) and R∗ is very
good. Similar results have been obtained in correlated contexts. We
also observe that the sum capacity is an increasing function of the
loading factor α. Therefore, it is optimum to use a high loading
factor in our context.

The expressions ofR∗i and ofR∗ can be used in various ways. In
this paper, due to the lack of space, we just concentrate on two items.
We first study the influence of correlation matrices (Ci)i=1,...,K ,
and show that diagonal correlation matrices provide the best results
if the loading factor verifies α ≥ 1/2. More precisely, the following
result holds. In order to mention that R∗i and δi depend on Ci, we
use the notation R∗i (Ci) and δi(Ci) in the statement of the Theo-
rem.

Theorem 3 Let Ci = UH
i ΛiUi be the eigenvalue/eigenvector de-

composition of matrixCi. Ifα ≥ 1/2, thenR∗i (Ci) ≤ R∗i (Λi), and
the equality holds if and only if Ci = Λi. In this case, R∗i (Ci) =
R∗i (Λi) is reduced to

R∗i (Λi) =
1

N
log2 det

„
It +

δi(Λi)

α
Λi

«

Moreover, the entries of the positive diagonal matrix(ces) Λi sat-
isfying 1

t
Tr(Λi) = 1 and maximizing R∗i (Λi) are as follows: the

greatest s entries are all equal to t
s
where s ≤ t, and the smallest

t − s entries are zero, where the value of s depends on the various
parameters.

The proof is omitted due the lack of space.
We can use this result in order to study the best transmission

scheme in the case where the channel taps Hi(l) are i.i.d. matrices
(Ci = It for each i) , and where the receive powers (pi)i=1,...,K

all coincide. Our results allow to consider the case where different
powers are allocated to the transmit antennas. Let
Λ = Diag(λ1, λ2, . . . , λt) be a diagonal matrix with positive en-
tries, and satisfying 1

t
Tr(Λ) = 1. If transmit antenna j sends se-

quence (λjdj(n))n∈Z instead of sequence (dj(n))n∈Z, then it can
easily be shown that R∗ is given by

R∗ = α log2 det(It +
δ(Λ)

α
Λ)

where δ(Λ) is the solution of the equation (6) in which pi = 1 and
Ci = Λ (just use the above results in the case pi = 1,Ci = Λ

for each i = 1, . . . , K). Theorem 3 implies that the equal power
transmission strategy (Λ = It) is not necessarily optimum, and
that a selection antenna scheme can provide better results. In other
words, it is not always optimum to use all the transmit antennas.
This is in contrast with the context of MIMO systems in non fre-
quency selective i.i.d. fading channels equiped with maximum like-
lihood decoders: the transmission scheme that maximizes the er-
godic Shannon capacity consists in sending equal power indepen-
dent symbols on each transmit antenna (see [9]). Note also that The-
orem 3 implies that, as a function of Λ, α log2 det(It + δ(Λ)

α
Λ) is

not a concave function of Λ. Otherwise, the argument of its max-
imum would be equal to It. In other words, the asymptotic sum
capacity R∗, and therefore the non asymptotic capacity R(N) =
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Fig. 2. Sum capacity for different numbers of transmit antennas

PK
i=1 Ri(N), are not always concave functions of the correlation

matrices (Ci)i=1,...,K .
In order to illustrate this point, Fig. 2 represents R∗ in the above

i.i.d. context, for r = t = 4, and for r = 4, t = 3. The SNR is
equal to 15dB. It is seen that the sum capacity is better if t = 3 than
if t = 4 if the loading factor is greater than 0.6, thus confirming that
a selection antenna scheme is able to provide better results.
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